积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部综合其他(115)Weblate(60)人工智能(12)Blender(12)产品与服务(9)亿图(8)Krita(6)KiCad(5)版本控制(3)

语言

全部中文(简体)(112)中文(简体)(2)英语(1)

格式

全部PDF文档 PDF(78)其他文档 其他(37)
 
本次搜索耗时 0.031 秒,为您找到相关结果约 115 个.
  • 全部
  • 综合其他
  • Weblate
  • 人工智能
  • Blender
  • 产品与服务
  • 亿图
  • Krita
  • KiCad
  • 版本控制
  • 全部
  • 中文(简体)
  • 中文(简体)
  • 英语
  • 全部
  • PDF文档 PDF
  • 其他文档 其他
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 【周鸿祎清华演讲】DeepSeek给我们带来的创业机会-360周鸿祎-202502

    7政企、创业者必读 8 AI不仅是技术革新,更是思维方式和社会结构的变革 国家 产业 个人 企业政企、创业者必读 人工智能发展历程(一)  从早期基于规则的专家系统,走向基于学习训练的感知型AI  从基于小参数模型的感知型AI,走向基于大参数模型的认知型AI  从擅长理解的认知型AI,发展到擅长文字生成的生成式AI  从语言生成式AI,发展到可理解和生成声音、图片、视频的多模态AI 我们对大模型发展趋势的十大预判 13政企、创业者必读 14 DeepSeek出现之前的十大预判 之一 传统AGI发展步伐在放慢 需要寻找新方向  Scaling Law边际效应递减  人类训练数据接近枯竭  合成数据无法创造新知识  推理能力难以泛化,成本高昂 全面超越人类的人工智能在逻辑上不成立政企、创业者必读 15 DeepSeek出现之前的十大预判 之二 慢思考成为新的发展模式 大模型发展范式正在从「预训练」转向「后训练」和「推理时计算」  大模型厂商都在探索慢思考、思维链技术政企、创业者必读 DeepSeek出现之前的十大预判 之三 模型越做越专  除了少数科技巨头,大多数公司都专注于做专业大模型  MoE架构盛行,本质是多个专家模型组成一个大模型  Deepmind的Alpha系列产品是这一趋势的最佳诠释 16政企、创业者必读 DeepSeek出现之前的十大预判 之四
    0 码力 | 76 页 | 5.02 MB | 6 月前
    3
  • pdf文档 开源中国 2023 大模型(LLM)技术报告

    LLM 技术报告 大语言模型(LLM) 技术作为人工智能领域的一项重要创 新在今年引起了广泛的关注。 LLM 是利用深度学习和大数据训练的人工智能系统,专门 设计来理解、生成和回应自然语言。这些模型通过分析大量 的文本数据来学习语言的结构和用法,从而能够执行各种语 言相关任务。以 GPT 系列为代表,LLM 以其在自然语言 处理领域的卓越表现,成为推动语言理解、生成和应用的引 擎。 LLM Tuning)  大模型训练平台与工具 基础设施 LLM Agent  备案上线的中国大模型  知名大模型  知名大模型应用 大模型 算力 工具和平台  LLMOps  大模型聚合平台  开发工具 AI 编程  插件、IDE、终端  代码生成工具 编程语言 3 / 32 LLM 技术背景 Transformer 架构和预训练与微调策略是 LLM 技术的 力的提升,研究者们开始设计更大规模的神经网络,以提高对语言复杂性的理解。 GPT (Generative Pre-trained Transformer) 的提出标志着 LLM 技术的飞速发展,其预训练和微调的 方法为语言任务提供了前所未有的性能,以此为基础,多模态融合的应用使得 LLM 更全面地处理各种 信息,支持更广泛的应用领域。 图源:https://postgresml.org/docs/
    0 码力 | 32 页 | 13.09 MB | 1 年前
    3
  • pdf文档 2023 中国开源开发者报告

    LLM 发展的新阶段。LLM Agent 是一种基于 LLM 的智能代 理,它能够自主学习和执行任务,具有一定的“认知能力 和决策能力”。LLM Agent 的出现,标志着 LLM 从传 统的模型训练和应用模式,转向以 Agent 为中心的智能 化模式。LLM Agent 打破了传统 LLM 的被动性,使 LLM 能够主动学习和执行任务,从而提高了 LLM 的应用 范围和价值;它为 LLM 的研究、OneFlow 的深度学习框架。 值得一提的还有华为的盘古大模型,其中盘古气象大模型是 首个精度超过传统数值预报方法的 AI 模型,速度相比传统 数值预报提速 10000 倍以上,能够提供全球气象秒级预 报。盘古大模型的研究成果在国际顶级学术期刊《自然》正 刊发表,获得国际学术界的认可。 年底,零一万物推出的 Yi 模型,200K 上下文窗口,可处 理约 40 万字的文本,成为当时全球大模型中最长的上下文 一、开源开发者事件回顾 三、中国开发者开源新动向 二、2023 LLM 技术报告  46 | 向量数据库  47 | 数据库向量支持  48 | 大模型框架、微调  51 | 大模型训练平台与工具  53 | 编程语言  57 | 知名大模型  58 | 备案上线的中国大模型  21 | 硬核发版  26 | 热门话题  33 | 重磅官宣  39 | R
    0 码力 | 87 页 | 31.99 MB | 1 年前
    3
  • pdf文档 2024 中国开源开发者报告

    大模型撞上“算力墙”,超级应用的探寻之路 36 | AI 的三岔路口:专业模型和个人模型 40 | 2024 年 AI 编程技术与工具发展综述 45 | RAG 的 2024:随需而变,从狂热到理性 51 | 大模型训练中的开源数据和算法:机遇及挑战 57 | 2024 年 AI 编程工具的进化 62 | AI 开发者中间件工具生态 2024 年总结 66 | AI Agent 逐渐成为 AI 应用的核心架构 Infinity-MM) 领 域贡献了大量有影响力的基础工作和资源。 2024 年,中国开源社区涌现出众多高质量的自发研究成果。其中,MAP 团队推出的全开 源模型 Map Neo 引人瞩目。该模型在训练数据、脚本以及模型对齐工作上实现了全面公开, 成为国内少有的真正意义上完全开源的项目。 22 / 111 而 InstantX 团队的 InstantID 则作为中国模型在国际开源社区的 2024 ChatGPT。8 个月以后 Meta 就与微软合作发布了开源大模型 LLaMA-2。这个赛道的主要玩家在技术和商业化上有差距, 但没有到翻盘无望的程度。  大模型赛道不但包括模型的训练,也包括模型服务。训练是软件的制作成本,而服 务是软件的长期运行成本。  大模型赛道的市场化程度非常高。算法、算力、数据、人才,这些构建大模型的基 础要素并不为权力机构垄断,大多要从市场上获得。 26
    0 码力 | 111 页 | 11.44 MB | 8 月前
    3
  • pdf文档 清华大学 DeepSeek+DeepResearch 让科研像聊天一样简单

    Kimi k1.5  垂直领域优化:针对特定领域 (如医疗、法律)进行优化, 提供高精度结果。  长文本处理:擅长处理长文本 和复杂文档,适合专业场景。  定制化能力:支持用户自定义 训练和微调,适应特定需求。 Open AI o3 mini  小型化设计:轻量级模型, 适合资源有限的环境。  快速响应:优化推理速度, 适合实时交互场景。  通用性强:适用于多种自 知网研学平台 斯坦福STORM 数据来源 依托真实且可靠的学术数据库, 确保文献数据的准确性与可信 度,为综述内容的真实性提供 坚实保障 涵盖全球科技论文、专利文献、 科学数据、学位论文、预印本、 图书专著及开放资源 中国知网数据库,涵盖海量的 中文文献 通过必应搜索引擎收集数据, 确保来源的广泛性,但主要依 赖互联网主流来源,可能包含 推广内容,需进一步筛选和验 证 文本类型 日 2 0 2 4 年 1 2 月 2 6 日 发 布 总 参 数 达 6 7 1 0 亿 的 D e e p S e e k - V 3 , 采 用 创 新 MoE架构和FP8混合精度训练, 训练成本大幅降低 DeepSeek是一家专注通用人工智能(AGl)的中国科技公司,主攻大模型研发与应用。 DeepSeek-R1是其最新发布并开源的推理模型,擅长处理复杂任务且可免费商用,其性能
    0 码力 | 85 页 | 8.31 MB | 8 月前
    3
  • pdf文档 DeepSeek图解10页PDF

    Transformer 基础架构 . . . . . . . . . . . . . . . . . . . . . . 6 2.3 LLM 基本训练方法 . . . . . . . . . . . . . . . . . . . . . . . . 7 2.3.1 预训练(Pretraining) . . . . . . . . . . . . . . . . . . 7 2.3.2 监督微调(Supervised 1 DeepSeek-R1 完整训练过程 . . . . . . . . . . . . . . . . . . . 7 3.1.1 核心创新 1:含 R1-Zero 的中间推理模型 . . . . . . . 8 3.1.2 核心创新 2:通用强化学习 . . . . . . . . . . . . . . . 8 3.2 含 R1-Zero 的中间推理模型训练过程 . . . . . . . . . . . . . . 9 3.3 通用强化学习训练过程 . . . . . . . . . . . . . . . . . . . . . . 10 3.4 总结 DeepSeek-R1 . . . . . . . . . . . . . . . . . . . . . . . . 11 4 参考文献 . . . . . . . . . . . . . . . . . . . .
    0 码力 | 11 页 | 2.64 MB | 8 月前
    3
  • pdf文档 普通人学AI指南

    与专用人工智能(AI)不同,AGI 能够执行任何智力任务,具备自我意识和 自适应学习能力。AGI 的研发目标是创造出可以广泛地模拟人类认知能力的智 能系统。 1.3 大模型 大模型通常指的是大规模的人工智能模型,这类模型通过训练大量的数据来获 得广泛的知识和能力。这些模型通常具有庞大的参数数量,能够处理复杂的任 务,如自然语言理解、图像识别、语音识别等。 闭源大模型包括 OpenAI 的 GPT 系列和 Google 的 BERT。这些模型因其 的缩写,表示万亿。在 AI 大模型 中,”T” 常用来表示模型在训练中处理的 Token 数量。Token 是指模型处理的 基本单元,可以是一个单词、子词,或者字符等。 在大规模预训练语言模型的训练中,通常会提到模型是在多少个 Token 上 进行学习的,以表明模型的训练规模和数据量。例如:LLaMA3 语言模型使用 了超过 15T 个 token 进行训练。 2 AI 工具梳理 大家有没有觉得 AI 工 问答工具 ChatGPT 经过特别训练,可以理解和生成人类语言,从而在多种应用场景中提 供辅助,包括聊天机器人、写作辅助、信息查询等。 2.1.2 Claude Claude 是 Anthropic 公司开发的一系列大型语言模型,它设计用于执行多种涉 及语言、推理、分析和编码的任务。 2.1.3 通义千问 通义千问(Qwen)是阿里云开发的一系列预训练的大型语言模型,用于聊天、 生成内容
    0 码力 | 42 页 | 8.39 MB | 8 月前
    3
  • pdf文档 Moonshot AI 介绍

    关键问题,定义了语⾔建模的新标准;曾 与DeepMind和CMU合作研究,⾸次实现⼩样本性能逼近全监督学习的⾼效对⻬⽅法。 ii. 视觉⽅⾯。团队成员发明了MoCo,引爆了基于对⽐学习的视觉预训练范式,也是过去三年 CVPR引⽤量最⾼的⼯作;发明了ShuffleNet,最⾼效的视觉⽹络结构之⼀;主导开发了 detectron2,⼀个被⼴泛使⽤的视觉开源项⽬并被集成到Meta全线VR/AR产品中。 杨植麟⾝上的标签有天才AI科学家、连续创业者……在这次深度访谈中,他再次证明⾃⼰是个真 正“懂”⼤模型的创业者,所以本⽂中有许多反共识的观点:杨植麟觉得微调最终会不存在, tokenizer最后也不⼀定是必须的;硅⾕⼤模型训练者们担⼼数据瓶颈和能源限制,他反⽽觉得所有问 题都是互相关联的,多模态可以缓解数据短缺,合成数据则可以通过改变计算范式解决能源问题。 本⽂还试图回答另⼀个外界普遍关⼼的问题:⼀家新创⽴的AGI 亿的contextlength,今天看到的问题都不是问题”。 AGI:AI本质就是⼀堆scalinglaw 海外独⻆兽:我们把LLM的训练⽐作登⽉,⽉之暗⾯的名字也和登⽉相关。你怎么看现在创业公司 的LLM训练,在GPU和算⼒资源有限的条件下,还能实现登⽉吗? 杨植麟:“登⽉”有⼏个不同的⽣产要素,算⼒肯定是⼀个核⼼,但还有其他的。 你需要⼀个同时满⾜sc
    0 码力 | 74 页 | 1.64 MB | 1 年前
    3
  • pdf文档 网易数帆 领先的数字化转型技术与服务提供商 2021

    等主流计算框架,支持自 定义镜像、支持模型及服务标准化。 便捷易用 模型开发、训练、调度可视化管控,内置 100+算子,支持模型一键式部署,降低 AI建模门槛。 AutoML 支持端到端 AutoML,自动化完成特征 治理、参数寻优、模型筛选流程,智能化 加速数据价值产出。 全流程管控 一站式覆盖数据导入、特征治理、模型 开发、模型训练、推理服务建模全流程, 提升 AI 建模效率。 轻量化、低成本 交互式建模 EasyAIOS 服务创建 服务测试 服务发布 免编码拖拽 建模 模型/数据市场 数据源管理 专家开发环境 Jupyter交互式 建模 Jupyter模型 市场 训练服务 训练可视化 作业管理 自定义算子 服务管理 SOLUTIONS 为金融行业提供端到端数据服务能力,致力于帮助金融机构加快自身数字化进程,打造数字化金融服务,实现业务 在线、渠道开放、金融智能、生态融合、架构敏捷与数据服务化。 打造一站式、高性能的分析建模平台 有效支撑数据智能化分析场景 满足国产化需求 解决方案: 以中台的模式构建电商平台 业务可扩展,敏捷迭代等 从 0-1 构建运营体系,建设运营体系 构建企业算法平台,实现自主开发训练 模型 提升建模质量 客户收益: 最大程度地打通获客渠道 支撑极致的客户体验 提高用户的重复转化率 满足现有技术需求和长期发展需要 快速响应风控、营销、运营等场景需求 集团算法模型资产统一管理、自主可控
    0 码力 | 43 页 | 884.64 KB | 1 年前
    3
  • pdf文档 清华大学 普通人如何抓住DeepSeek红利

    DeepSeek是一家专注通用人工智能(AGI)的中国科技公司,主攻大模型研发与应用。 • DeepSeek-R1是其开源的推理模型,擅长处理复杂任务且可免费商用。性能对齐OpenAI-o1正 式版。 • DeepSeek-R1在后训练阶段大规模使用了强化学习技术,在仅有极少标注数据的情况下,极大 提升了模型推理能力。在数学、代码、自然语言推理等任务上,性能比肩OpenAl-o1正式版。 (Pass@1) 强化共情:增加“我知道现在项目关键期,非常抱歉给您添麻烦”。 • 弱化模糊表述:将“家里有事”改为“家人突发重病需陪护”,避免领导误解为小事。 • 明确行动:补充“请假期间可随时联系我处理紧急问题”。 3. 预判领导反应并准备预案(用AI模拟问答) p 操作:输入:“如果领导说‘项目缺了你不行,能不能缩短假期?’如何回应?” p AI建议回应: • 共情+底线+替代方案: “我完全理解项目的重要性,但家人目 同事代为参与, 那么家庭活动可以优先考虑。 与相关方(上级、同事)迅速沟通,争取灵活处理会议安排。 缓解工作压力和失眠: 中短期内:失眠和压力会影响你的整体表现和健康。可以安排一些时间做放松 训练、适量运动、或者短暂休息。必要时安排咨询,调整心态。 制定健康改善计划: 中期计划:针对体脂率问题,制定一个可行的锻炼和饮食计划,让健康改善成 为你日常生活的一部分,不必急于求成,而是稳步前进。
    0 码力 | 65 页 | 4.47 MB | 8 月前
    3
共 115 条
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 12
前往
页
相关搜索词
周鸿祎清华演讲DeepSeek我们带来创业机会360202502开源中国2023模型LLM技术报告开发开发者2024清华大学DeepResearch科研图解10PDF普通通人普通人AI指南Moonshot介绍网易数帆领先数字数字化转型服务提供提供商服务提供商2021华大大学如何抓住红利
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩