积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部综合其他(153)Weblate(84)KiCad(14)人工智能(13)Blender(12)产品与服务(11)Krita(8)数据可视化(8)DataEase(8)版本控制(2)

语言

全部中文(简体)(151)中文(简体)(2)

格式

全部PDF文档 PDF(101)其他文档 其他(51)TXT文档 TXT(1)
 
本次搜索耗时 0.034 秒,为您找到相关结果约 153 个.
  • 全部
  • 综合其他
  • Weblate
  • KiCad
  • 人工智能
  • Blender
  • 产品与服务
  • Krita
  • 数据可视化
  • DataEase
  • 版本控制
  • 全部
  • 中文(简体)
  • 中文(简体)
  • 全部
  • PDF文档 PDF
  • 其他文档 其他
  • TXT文档 TXT
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 清华大学 DeepSeek+DeepResearch 让科研像聊天一样简单

    DeepSeek R1  高效推理:专注于低延迟和 高吞吐量,适合实时应用。  轻量化设计:模型结构优化, 资源占用少,适合边缘设备 和移动端。  多任务支持:支持多种任务, 如文本生成、分类和问答。 Kimi k1.5  垂直领域优化:针对特定领域 (如医疗、法律)进行优化, 提供高精度结果。  长文本处理:擅长处理长文本 和复杂文档,适合专业场景。  定制化能力:支持用户自定义 定制化能力:支持用户自定义 训练和微调,适应特定需求。 Open AI o3 mini  小型化设计:轻量级模型, 适合资源有限的环境。  快速响应:优化推理速度, 适合实时交互场景。  通用性强:适用于多种自 然语言处理任务,如对话 生成和文本理解。 爬虫数据采集 1、阅读网页源代码,提取特定网页内容; 2、撰写python脚本; 3、提取并合并网址; 4、提取网址内容; 5、写入文件。 数据呈现的“画龙点睛” Open AI o3mini 直接调用 DALLE 生成图表,Kimi k1.5 提 供 Python 代码支持,Claude 3.5 Sonnet 负责图表逻辑优化 数据采集 数据预处理 数据分析 可视化呈现 新思路:DeepSeek R1的数据应用 中 文 数 据 处 理 优 势 创 意 写 作 生 成 能 力 数 据 读 取 分 析 能 力 低
    0 码力 | 85 页 | 8.31 MB | 8 月前
    3
  • pdf文档 DeepSeek从入门到精通(20250204)

    的答案 基于链式思维(Chain-of-Thought),逐步推理 问题的每个步骤来得到答案 决策能力 依赖预设算法和规则进行决策 能够自主分析情况,实时做出决策 创造力 限于模式识别和优化,缺乏真正的创新能力 能够生成新的创意和解决方案,具备创新能力 人机互动能力 按照预设脚本响应,较难理解人类情感和意图 更自然地与人互动,理解复杂情感和意图 问题解决能力 擅长解决结构化和定义明确的问题 直接给出明确步骤或 格式要求 简单任务、需快速执行 “用Python编写快速排序函 数,输出需包含注释。” ✅ 结果精准高效 ❌ 限制模型自主优化空 间 需求导向 描述问题背景与目标, 由模型规划解决路径 复杂问题、需模型自主 推理 “我需要优化用户登录流程, 请分析当前瓶颈并提出3种方 案。” ✅ 激发模型深层推理 ❌ 需清晰定义需求边界 混合模式 结合需求描述与关键 约束条件 预算控制在2000元内。” ✅ 兼顾目标与细节 ❌ 需避免过度约束 启发式提问 通过提问引导模型主 动思考(如“为什 么”“如何”) 探索性问题、需模型解 释逻辑 “为什么选择梯度下降法解 决此优化问题?请对比其他 算法。” ✅ 触发模型自解释能力 ❌ 可能偏离核心目标 任务需求与提示语策略 任务类型 适用模型 提示语侧重点 示例(有效提示) 需避免的提示策略 数学证明 推理模型
    0 码力 | 104 页 | 5.37 MB | 8 月前
    3
  • pdf文档 清华大学 DeepSeek 从入门到精通

    的答案 基于链式思维(Chain-of-Thought),逐步推理 问题的每个步骤来得到答案 决策能力 依赖预设算法和规则进行决策 能够自主分析情况,实时做出决策 创造力 限于模式识别和优化,缺乏真正的创新能力 能够生成新的创意和解决方案,具备创新能力 人机互动能力 按照预设脚本响应,较难理解人类情感和意图 更自然地与人互动,理解复杂情感和意图 问题解决能力 擅长解决结构化和定义明确的问题 直接给出明确步骤或 格式要求 简单任务、需快速执行 “用Python编写快速排序函 数,输出需包含注释。” ✅ 结果精准高效 ❌ 限制模型自主优化空 间 需求导向 描述问题背景与目标, 由模型规划解决路径 复杂问题、需模型自主 推理 “我需要优化用户登录流程, 请分析当前瓶颈并提出3种方 案。” ✅ 激发模型深层推理 ❌ 需清晰定义需求边界 混合模式 结合需求描述与关键 约束条件 预算控制在2000元内。” ✅ 兼顾目标与细节 ❌ 需避免过度约束 启发式提问 通过提问引导模型主 动思考(如“为什 么”“如何”) 探索性问题、需模型解 释逻辑 “为什么选择梯度下降法解 决此优化问题?请对比其他 算法。” ✅ 触发模型自解释能力 ❌ 可能偏离核心目标 任务需求与提示语策略 任务类型 适用模型 提示语侧重点 示例(有效提示) 需避免的提示策略 数学证明 推理模型
    0 码力 | 103 页 | 5.40 MB | 8 月前
    3
  • pdf文档 2024 中国开源开发者报告

    型 LLM 开发技术栈作为切入点,将深入探讨以下中国 AI 大模型领域的代表性开源项目社区。 这些开源项目社区覆盖了深度学习框架、向量数据库、AI辅 助编程、LLM 应用开发框架、模型微调、推理优化、LLM Agent,以及检索增强生成(RAG)等多个关键技术栈。 为了更全面客观地展示中国大模型 LLM 开发技术栈的开源 社区生态,我们使用了 对开源社区的生态评 估体系,希望通过这些数据洞察中国开源开发者在 GenAI 扩展的联合优化,在搭载骁龙 8 Gen 4 处理器的手机上实现了每秒 65 个 tokens 的推理速度,接近人类语音的平均输出速率。尽管存在电池续航和内存占用过大等挑战, 端上模型代表了 AI 技术隐私保护和成本优化的未来方向。中国在这一领域的探索,为行业提供 了宝贵经验。 推理扩展法则的潜力释放 通过推理扩展法则,模型性能可通过延长“思考时间”而进一步优化。这一技术模拟了人类 源社区提供了 23 / 111 丰富的资源,在这一过程中,小模型不仅在推理能力上有了显著提升,也推动了行业整体技术水 平的进步。 结合当前人工智能产业界的“人工智能+”计划,小模型在特定任务优化上的优势愈发突出, 预计将在金融、医疗和工业自动化等热门领域发挥引领作用,以更高效、更精准的方式满足多样 化需求,帮助人工智能在实际应用场景中落地。 开源多元化与应用细分 中国开源模型的发展
    0 码力 | 111 页 | 11.44 MB | 8 月前
    3
  • pdf文档 Moonshot AI 介绍

    Schulman亲⾃邀请加盟。 iv. 基础设施⽅⾯。团队核⼼成员曾带领数⼗⼈从零开发世界领先的深度学习框架,也具备数千 卡集群全⾃动化硬件运维告警、数百亿特征检索、⼤规模(数⼗PB数据、百万台机器)分 布式系统数量级性能优化的经验。 c. ⽬前团队⼈数超过80⼈,每个⽉都有在全球某个领域有显著影响⼒的⼈加⼊。 2.团队聚焦底层技术创新,技术Vision强 a. 引领⼤模型的“⽆损⻓上下⽂”时代。202 海外独⻆兽:contextlength的提升存在什么规律?有技术可预⻅性吗? 杨植麟:我⾃⼰感觉存在contextlength的摩尔定律。但需要强调:给定⻓度下的准确率也⾮常重 要,需要同时优化⻓度和准确率(⽆损压缩)两个指标。 在保证模型能⼒和智商的情况下,我觉得⼤概率contextlength的提升是指数级增⻓的。 多模态:⼤部分架构不值得被scaleup 海外 er才会有techvision? 杨植麟:核⼼是两点,⼀个是抓⼤放⼩,⼀个是终局思维。我跟很多researcher合作过,容易出现的 ⼀个问题就是过分雕花,容易在局部⾥看到有很多可以优化的东西,⽐如我们发现transformer解决 了LSTM的contextlength问题,但如果再跳出来⼀层,就会发现本质上每⼀代技术都是在提升 contextlength。
    0 码力 | 74 页 | 1.64 MB | 1 年前
    3
  • pdf文档 清华大学 普通人如何抓住DeepSeek红利

    支持联网搜索与深度思考模式,同时支持文件上传,能够扫描读取各类文件及图片中的文字内容。 决策支持 文体转换 个性化推荐 翻译与转换 多语言翻译 异常检测 多源信息融合 知识与推理 知识图谱构建 流程优化 数据可视化 数据分析 趋势分析 多模态交互 任务执行 任务协调 工具调用 格式转换 关系抽取 语言理解 文案写作 代码注释 故事创作 通用问答 专业领域问答 因果推理 第四阶段:10分钟——用AI优化与格式伪装 p统一话术: “将以下段落改写成政府报告风格,加入‘数字化转型’‘双碳战略’等关键词:{粘贴原文}” p生成图表: 指令:“将上文‘设备配置表’转换成LaTeX格式的三线表。”插入图表后,自动增加方案“厚度”。 p最终润色: “检查以下方案书逻辑漏洞,列出3个可能被客户质疑的点,并给出应对答案。” p关键提醒: ü 保命优先级:先堆字数再优化,前30分钟专注“把文档撑到10000字”。 要请假3天。我已将项目A的测试环节交接给小刘(附交接文 档),每天早晚会同步进度。周四返岗后加班追赶,确保不影响上线。” 2. 生成具体话术(用AI优化表达) p 操作:输入你的草稿:“张总,我家里有事要请假,但项目我会尽量兼顾。” p AI优化建议: • 强化共情:增加“我知道现在项目关键期,非常抱歉给您添麻烦”。 • 弱化模糊表述:将“家里有事”改为“家人突发重病需陪护”,避免领导误解为小事。
    0 码力 | 65 页 | 4.47 MB | 8 月前
    3
  • pdf文档 2023 中国开源开发者报告

    2023 年 9 月,蚂蚁集团正式开 源代码大模型 CodeFuse——基 于蚂蚁基础大模型研发。 这是蚂蚁自研的代码生成专属 大模型,帮助开发者自动生成代 码、自动增加注释、自动生成测 试用例、修复和优化代码等。 2023 年 8 月,阿联酋研究团队宣布开源阿拉伯语大模型 Jais。Jais 是一个 经过 130 亿个参数预训练的阿拉伯语和英语双语大型语言模型,在包含 720 亿个阿拉伯语词块和 2790 自动跳过开屏广告应用「李跳跳」无限期停更 微软于 2023 年 8 月发布了 Visual Studio for Mac 的退役公告。未来, 开发团队将专注于增强 Visual Studio 和 VS Code,优化它们以进行跨平 台开发。 Visual Studio for Mac 退役后,微软方面仍会为 Mac 开发者提供替代方 案,例如 C# Dev Kit for VS Code 和其他扩展。 开源富文本编辑器 600 条 x86 指令和 180 条 Linux 系统调用。 距离 Svelte 3 发布过去了四年多的时间, Svelte 4 稳定版本于 2023 年 6 月正式发 布。 新版本改进了性能、优化了开发者体验,并大 改了网站。Svelte 4 主要是一个维护版本,它 为下一代的 Svelte 发布奠定了基础。 Qwik 是一个全栈式 Web 框架,Qwik 基于 React、Angular
    0 码力 | 87 页 | 31.99 MB | 1 年前
    3
  • pdf文档 DeepSeek图解10页PDF

    在本地搭建大模型(如 DeepSeek)具有多个重要的优势,比如: 1. 保护隐私与数据安全。数据不外传:本地运行模型可以完全避免数据上 传至云端,确保敏感信息不被第三方访问。 2. 可定制化与优化。支持微调(Fine-tuning):可以根据特定业务需求对模 型进行微调,以适应特定任务,如行业术语、企业内部知识库等。 3. 离线运行,适用于无网络环境。可在离线环境下运行:适用于无互联网 据集,让模型在特定任务上优化表现。调整参数,使其更符合人类需求,如 问答、对话生成等任务。 2.3.3 强化学习(Reinforcement Learning, RL) 采用强化学习(RL)方法进行优化,主要通过人类反馈强化学习(RLHF, Reinforcement Learning from Human Feedback): 强化学习(RLHF)优化过程 • 步骤 1:人类标注者提供高质量回答。 知识,严禁拿此资料引流、出书、等形式的商业活动 偏好调整,如下图7所示: 图 7: R1 完整训练过程 训练起点。DeepSeek-R1 的训练起点是 DeepSeek-v3-Base,作为基础模型 进行训练,为后续的推理优化奠定基础。 3.1.1 核心创新 1:含 R1-Zero 的中间推理模型 如图7所示,推理导向的强化学习(Reasoning-Oriented Reinforcement Learn- ing)得到中间推理模型(Iterim
    0 码力 | 11 页 | 2.64 MB | 8 月前
    3
  • pdf文档 2023年中国基础软件开源产业研究白皮书

    iresearch.com.cn 开源产业链关系 以开源社区及代码托管平台为中心,各方合力促进产业源与端共生共长 发起者可以将源代码放在代码托管平台上,结合开发者的代码贡献进一步提升源代码质量。在这个代码优化的过程中,也有其他力 量辅助:1)开源基金会可选择性接受项目的捐赠并运营项目;2)开源技术论坛通常会提供更广阔的开发者交流平台,提升开发者 能力水平;3)开源社区评估机构可对开源社区进行评分,辅助开 主研究及绘制。 法务服务 社区 治理 社区 运营 代码 审核 开源 开发 生态 合作 法务 合规 开源企业发起者内的多组织协作 开源开发 战略合作 社区运营 代码审核 软件优化 选择适合开源项目的开源协 议,依据企业对项目的开源 方案审定协议中个别条款 向上对接高校及研究机构, 加紧基础技术共建;向下对 应发行版ISV厂商,将软件向 更多行业及场景渗透 规划开源软件迭代方向,包 4.4% 其他 0.9% 开源社区中,使用者比例最高,使用开源软件、发掘开源代码是大多 数开发者加入开源项目的起点,随着与社区的绑定不断加深,使用者 逐渐向贡献者转化,围绕项目提出自身的建议或优化方向。 14 ©2023.11 iResearch Inc.
    0 码力 | 43 页 | 4.69 MB | 1 年前
    3
  • pdf文档 【周鸿祎清华演讲】DeepSeek给我们带来的创业机会-360周鸿祎-202502

    DeepSeek颠覆式创新——开源 34政企、创业者必读 成本的急剧降低  DeepSeek可适配国产硬件,促进国产硬件发展  DeepSeek的优化降低对推理硬件的要求,减少推理成本  训练成本降低,堆显卡模式受质疑,探索新思路,算法优化空间大  无需训练自己的基座模型,直接部署在DeepSeek上,不用重复发明轮子  公开蒸馏方法,帮助其他模型提升能力,实现了模型制造模型,犹如工业母机 高炉燎铁能耗预测 • 高炉在含量智能预监 • 铁包动态调度算法(铁包 跟踪) • 烟气余热回收控制 • 部署工艺模型分析诊断 • 能源诊断分析 • 建设质量工艺动态设计 优化 • 堆堵料异常检测 • 炼铁原料混匀过程调度 优化 • 风机风压参数实时捕捉 和分析检验 • ·计算最佳工艺参数 • 炼钢工序物料属性检测 • ·精炼钢水温度连续测量 • 炼钢设备远程监控及故障 诊断 • ·转炉炉体缺陷检测 钢水裸露状态和渣 壳状态识别 • 铸胚编号识别 • 连铸漏钢及纵裂纹 预报 • 带材制品板坯号自 动识别 • 实时定位 • 转炉炼钢一次除尘 风机振幅故障分与 处理 • 连铸浇次计划优化 算法 • ·连铸过程多场耦 合 • 加热炉火焰识别 • 加热炉前字符识别自动核料 • 加热炉内字符识别自动核料 • 中厚板冷床钢板自动识别 & 排布 • 棒材板坯识別 & 自动热送
    0 码力 | 76 页 | 5.02 MB | 6 月前
    3
共 153 条
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 16
前往
页
相关搜索词
清华大学DeepSeekDeepResearch科研入门精通20250204清华华大大学2024中国开源开发开发者报告MoonshotAI介绍普通通人普通人如何抓住红利2023图解10PDF基础软件产业研究白皮皮书白皮书周鸿祎演讲我们带来创业机会360202502
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩