积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部数据库(124)PostgreSQL(40)TiDB(31)数据库中间件(15)Greenplum(12)Firebird(9)Vitess(8)Apache Doris(2)ClickHouse(2)MySQL(1)

语言

全部英语(91)中文(简体)(28)俄语(3)德语(1)英语(1)

格式

全部PDF文档 PDF(123)PPT文档 PPT(1)
 
本次搜索耗时 0.583 秒,为您找到相关结果约 124 个.
  • 全部
  • 数据库
  • PostgreSQL
  • TiDB
  • 数据库中间件
  • Greenplum
  • Firebird
  • Vitess
  • Apache Doris
  • ClickHouse
  • MySQL
  • 全部
  • 英语
  • 中文(简体)
  • 俄语
  • 德语
  • 英语
  • 全部
  • PDF文档 PDF
  • PPT文档 PPT
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 Al原生数据库与RAG

    Infrastructure Landscape Application Middle Platform Data Middle Platform(Modern Data Stack) Middleware Ingestion/Transport Storage Query Processing Transformation Analysis/Output Lakehouse Dashboards Embedded Operational Databases A16Z Analytics Serving OLAP Real time OLAP Clickhouse Druid Reverse ETL Stream Processing OLTP NoSQL/Multi Model Lindorm HTAP PolarDB PolarDB TSDB Search Elasticsearch
    0 码力 | 25 页 | 4.48 MB | 1 年前
    3
  • pdf文档 Real-Time Unified Data Layers: A New Era for Scalable Analytics, Search, and AI

    data silos or integration bottlenecks. A modern Real-Time UDL typically includes: Real-time data ingestion from structured, semi-structured and unstructured sources (IoT, logs, event streams). Multi-model real- time insights, delaying critical business actions. Optimized Ingestion, Indexing and Querying Real-Time UDLs index data upon ingestion and execute complex queries on very large data sets in the sub-second for many applications. Continuous data flow: CrateDB handles high-throughput, high-velocity data ingestion and analysis, ensuring businesses can respond dynamically to changing conditions. Instant data insights:
    0 码力 | 10 页 | 2.82 MB | 6 月前
    3
  • pdf文档 Pivotal HVR meetup 20190816

    Multiple SCD models (slides after that...) • Good “dove-tailing” with subsequent “sematic” ETL steps Ingestion into relational data lake semantic layer (cubes, marts etc..) ODS, e.g. redshift, greenplum uncompacted data in target S3 • HVR also delivers meta-data as hive external tables definitions Ingestion into data lake storage compaction storage, e.g. CSV or Avro files on S3 semantic layer (cubes need SQL access will get ‘basic’ replication Added value from HVR • Easy to setup • Performant Ingestion into data lake using streaming compaction semantic layer (cubes, marts etc..) ETL ODS, e.g
    0 码力 | 31 页 | 2.19 MB | 1 年前
    3
  • pdf文档 Apache ShardingSphere 5.1.1 Document

    rewrite. Optimization of ShardingSphere ShardingSphere has optimized in two ways. Firstly, it adopts stream process + merger ordering to avoid excessive memory occupation. SQL rewrite unavoidably occupies DATA_CONSISTENCY_CHECKER (algorithmDefinition) rateLimiter: RATE_LIMITER (algorithmDefinition) streamChannel: STREAM_CHANNEL (algorithmDefinition) workerThread: WORKER_THREAD=intValue batchSize: BATCH_SIZE=intValue WORKER_THREAD=40, BATCH_SIZE=1000 ), 5.2. ShardingSphere-Proxy 170 Apache ShardingSphere document, v5.1.1 STREAM_CHANNEL(TYPE(NAME=MEMORY, PROPERTIES("block-queue-size"=10000))), COMPLETION_DETECTOR(TYPE(NAME=IDLE
    0 码力 | 458 页 | 3.43 MB | 1 年前
    3
  • pdf文档 Apache ShardingSphere 5.1.2 Document

    rewrite. Optimization of ShardingSphere ShardingSphere has optimized in two ways. Firstly, it adopts stream process + merger ordering to avoid excessive memory occupation. SQL rewrite unavoidably occupies DATA_CONSISTENCY_CHECKER (algorithmDefinition) rateLimiter: RATE_LIMITER (algorithmDefinition) streamChannel: STREAM_CHANNEL (algorithmDefinition) workerThread: WORKER_THREAD=intValue batchSize: BATCH_SIZE=intValue INPUT( WORKER_THREAD=40, BATCH_SIZE=1000 ), OUTPUT( WORKER_THREAD=40, BATCH_SIZE=1000 ), STREAM_CHANNEL(TYPE(NAME=MEMORY, PROPERTIES("block-queue-size"=10000))), COMPLETION_DETECTOR(TYPE(NAME=IDLE
    0 码力 | 503 页 | 3.66 MB | 1 年前
    3
  • pdf文档 TiDB v8.3 Documentation

    cleaning up stale regions might accidentally delete valid data #17258 @hbisheng • Fix the issue that Ingestion picked level and Compaction Job Size(files) are displayed incorrectly in the TiKV dashboard in TiDB Bin- log 6 Deprecated Y Y Y Y Y Y Y Y Y Y Change data cap- ture (CDC) Y Y Y Y Y Y Y Y Y Y Y Stream data to Ama- zon S3, GCS, Azure Blob Stor- age, and NFS through TiCDC Y Y Y Y Y E N N N N N transactions different processing engines based on the specific business. • Real-time stream processing When using TiDB in real-time stream processing scenarios, TiDB ensures that all the data flowed in constantly
    0 码力 | 6606 页 | 109.48 MB | 10 月前
    3
  • pdf文档 TiDB v8.4 Documentation

    TiCDC and PITR. 94 Data im- port and ex- port 8.4 8.3 8.2 8.1 7.5 7.1 6.5 6.1 5.4 5.3 5.2 5.1 Stream data to Ama- zon S3, GCS, Azure Blob Stor- age, and NFS through TiCDC Y Y Y Y Y Y E N N N N N TiCDC different processing engines based on the specific business. • Real-time stream processing When using TiDB in real-time stream processing scenarios, TiDB ensures that all the data flowed in constantly in the URL. Then, resultset is automatically closed but the result set to be read in the previous stream- ing query is lost. • The second method: Use Cursor Fetch by first setting FetchSize as a positive
    0 码力 | 6705 页 | 110.86 MB | 10 月前
    3
  • pdf文档 TiDB v5.1 Documentation

    major virtualized environments like VMware, KVM and XEN. • Red Hat Enterprise Linux 8.0, CentOS 8 Stream, and Oracle Enterprise Linux 8.0 are not supported yet as the testing of these platforms is in progress de- fault ini- tial- iza- tion com- mitTS -1 as the lat- est times- tamp; Con- fig- ure the down- stream tar- get TiDB as 10.0.1.12:4000 �→ 123 4.3.4.1.1 Topology templates • The simple template for Aggregating the count of rows both in TiDB (StreamAgg_20) and in TiKV ( ￿─ �→ StreamAgg_9) uses the stream aggregation, which is very efficient in its memory usage. The biggest issue with the current execution
    0 码力 | 2745 页 | 47.65 MB | 1 年前
    3
  • pdf文档 TiDB v7.5 Documentation

    Y Y Y Y TiDB Bin- log 7 Y Y Y Y Y Y Y Y Y Y Change data cap- ture (CDC) Y Y Y Y Y Y Y Y Y Y Stream data to Ama- zon S3, GCS, Azure Blob Stor- age, and NFS through TiCDC Y Y E N N N N N N N 7Starting different processing engines based on the specific business. • Real-time stream processing When using TiDB in real-time stream processing scenarios, TiDB ensures that all the data flowed in constantly in the URL. Then, resultset is automatically closed but the result set to be read in the previous stream- ing query is lost. • To use Cursor Fetch, first set FetchSize as a positive integer and configure
    0 码力 | 6020 页 | 106.82 MB | 1 年前
    3
  • pdf文档 TiDB v7.6 Documentation

    with TiCDC. After pausing data replication and conducting pre-online read-write tests in your down- stream TiDB cluster, this feature allows the cluster to gracefully and quickly roll back to the paused TSO race in some scenarios #49677 @lcwangchao • Fix the issue that query results are incorrect due to STREAM_AGG() incorrectly handling CI #49902 @wshwsh12 • Fix the issue that encoding fails when converting the issue that enforced sorting might become ineffective when a query uses optimizer hints (such as STREAM_AGG()) that enforce sorting and its execution plan contains IndexMerge #49605 @AilinKid • Fix the
    0 码力 | 6123 页 | 107.24 MB | 1 年前
    3
共 124 条
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 13
前往
页
相关搜索词
Al原生数据据库数据库RAGRealTimeUnifiedDataLayersNewEraforScalableAnalyticsSearchandAIPivotalHVRmeetup20190816ApacheShardingSphere5.1DocumentTiDBv8Documentationv5v7
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩