积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部数据库(164)数据库工具(46)PostgreSQL(40)phpMyAdmin(35)TiDB(30)数据库中间件(15)Greenplum(13)DBeaver(11)Vitess(9)Firebird(8)

语言

全部英语(134)中文(简体)(25)英语(3)德语(1)俄语(1)

格式

全部PDF文档 PDF(147)其他文档 其他(17)
 
本次搜索耗时 0.817 秒,为您找到相关结果约 164 个.
  • 全部
  • 数据库
  • 数据库工具
  • PostgreSQL
  • phpMyAdmin
  • TiDB
  • 数据库中间件
  • Greenplum
  • DBeaver
  • Vitess
  • Firebird
  • 全部
  • 英语
  • 中文(简体)
  • 英语
  • 德语
  • 俄语
  • 全部
  • PDF文档 PDF
  • 其他文档 其他
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 0. Machine Learning with ClickHouse

    https://github.com/clickhouse/ClickHouse There are stochastic regression methods in ClickHouse › stochasticLinearRegression › stochasticLogisticRegression Stochastic methods do support multiple factors. That’s That’s not the most important difference. 23 / 62 Stochastic linear regression in ClickHouse stochasticLinearRegression(parameters)(target, x1, ..., xN) Available parameters: › learning_rate › l2_regularization Nesterov All parameters are specified for stochastic gradient descent. Related wiki page: https://en.wikipedia.org/wiki/Stochastic_gradient_descent 24 / 62 Stochastic model with default parameters SELECT
    0 码力 | 64 页 | 1.38 MB | 1 年前
    3
  • pdf文档 1. Machine Learning with ClickHouse

    https://github.com/clickhouse/ClickHouse There are stochastic regression methods in ClickHouse › stochasticLinearRegression › stochasticLogisticRegression Stochastic methods do support multiple factors. That’s That’s not the most important difference. 23 / 62 Stochastic linear regression in ClickHouse stochasticLinearRegression(parameters)(target, x1, ..., xN) Available parameters: › learning_rate › l2_regularization Momentum, Nesterov All parameters are specified for stochastic gradient descent. Related page: https://www.jianshu.com/p/9329294d56d2 24 / 62 Stochastic model with default parameters SELECT stochasticLinearRegression(
    0 码力 | 64 页 | 1.38 MB | 1 年前
    3
  • pdf文档 PostgreSQL 14.10 Documentation

    computing a tree traversal using a recursive query, you might want to order the results in either depth- first or breadth-first order. This can be done by computing an ordering column alongside the other nt. This approach merely provides a convenient way to order the results afterwards. To create a depth-first order, we compute for each result row an array of rows that we have visited so far. For example data FROM tree t, search_tree st WHERE t.id = st.link ) SELECT * FROM search_tree; To add depth-first ordering information, you can write this: WITH RECURSIVE search_tree(id, link, data, path)
    0 码力 | 3032 页 | 13.27 MB | 1 年前
    3
  • pdf文档 PostgreSQL 14.10 Documentation

    computing a tree traversal using a recursive query, you might want to order the results in either depth-first or breadth-first order. This can be done by computing an ordering column alongside the other nt. This approach merely provides a convenient way to order the results afterwards. To create a depth-first order, we compute for each result row an array of rows that we have visited so far. For example data FROM tree t, search_tree st WHERE t.id = st.link ) SELECT * FROM search_tree; To add depth-first ordering information, you can write this: 135 Queries WITH RECURSIVE search_tree(id, link
    0 码力 | 2871 页 | 13.38 MB | 1 年前
    3
  • pdf文档 PostgreSQL 13.13 Documentation

    WITH RECURSIVE search_graph(id, link, data, depth) AS ( SELECT g.id, g.link, g.data, 1 FROM graph g UNION ALL SELECT g.id, g.link, g.data, sg.depth + 1 FROM graph g, search_graph sg search_graph; This query will loop if the link relationships contain cycles. Because we require a “depth” output, just changing UNION ALL to UNION would not eliminate the looping. Instead we need to recognize search_graph(id, link, data, depth, path, cycle) AS ( SELECT g.id, g.link, g.data, 1, ARRAY[g.id], false FROM graph g UNION ALL SELECT g.id, g.link, g.data, sg.depth + 1, path ||
    0 码力 | 2782 页 | 13.00 MB | 1 年前
    3
  • pdf文档 PostgreSQL 13.14 Documentation

    WITH RECURSIVE search_graph(id, link, data, depth) AS ( SELECT g.id, g.link, g.data, 1 FROM graph g UNION ALL SELECT g.id, g.link, g.data, sg.depth + 1 FROM graph g, search_graph sg search_graph; This query will loop if the link relationships contain cycles. Because we require a “depth” output, just changing UNION ALL to UNION would not eliminate the looping. Instead we need to recognize search_graph(id, link, data, depth, path, cycle) AS ( SELECT g.id, g.link, g.data, 1, ARRAY[g.id], false FROM graph g UNION ALL SELECT g.id, g.link, g.data, sg.depth + 1, path ||
    0 码力 | 2940 页 | 12.89 MB | 1 年前
    3
  • pdf文档 PostgreSQL 15.5 Documentation

    computing a tree traversal using a recursive query, you might want to order the results in either depth-first or breadth-first order. This can be done by computing an ordering column alongside the other nt. This approach merely provides a convenient way to order the results afterwards. To create a depth-first order, we compute for each result row an array of rows that we have visited so far. For example data FROM tree t, search_tree st WHERE t.id = st.link ) SELECT * FROM search_tree; To add depth-first ordering information, you can write this: 137 Queries WITH RECURSIVE search_tree(id, link
    0 码力 | 2910 页 | 13.60 MB | 1 年前
    3
  • pdf文档 PostgreSQL 15.5 Documentation

    computing a tree traversal using a recursive query, you might want to order the results in either depth- first or breadth-first order. This can be done by computing an ordering column alongside the other nt. This approach merely provides a convenient way to order the results afterwards. To create a depth-first order, we compute for each result row an array of rows that we have visited so far. For example data FROM tree t, search_tree st WHERE t.id = st.link ) SELECT * FROM search_tree; To add depth-first ordering information, you can write this: WITH RECURSIVE search_tree(id, link, data, path)
    0 码力 | 3073 页 | 13.49 MB | 1 年前
    3
  • pdf文档 PostgreSQL 16.1 Documentation

    computing a tree traversal using a recursive query, you might want to order the results in either depth- first or breadth-first order. This can be done by computing an ordering column alongside the other nt. This approach merely provides a convenient way to order the results afterwards. To create a depth-first order, we compute for each result row an array of rows that we have visited so far. For example data FROM tree t, search_tree st WHERE t.id = st.link ) SELECT * FROM search_tree; To add depth-first ordering information, you can write this: WITH RECURSIVE search_tree(id, link, data, path)
    0 码力 | 3133 页 | 14.10 MB | 1 年前
    3
  • pdf文档 PostgreSQL 16.1 Documentation

    computing a tree traversal using a recursive query, you might want to order the results in either depth-first or breadth-first order. This can be done by computing an ordering column alongside the other nt. This approach merely provides a convenient way to order the results afterwards. To create a depth-first order, we compute for each result row an array of rows that we have visited so far. For example data FROM tree t, search_tree st WHERE t.id = st.link ) SELECT * FROM search_tree; To add depth-first ordering information, you can write this: 138 Queries WITH RECURSIVE search_tree(id, link
    0 码力 | 2974 页 | 14.22 MB | 1 年前
    3
共 164 条
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 17
前往
页
相关搜索词
MachineLearningwithClickHousePostgreSQL14.10Documentation13.1313.1415.516.1
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩