Apache ShardingSphere 中文文档 5.1.1海量 数据的场景。 从性能方面来说,由于关系型数据库大多采用 B+ 树类型的索引,在数据量超过阈值的情况下,索引深度 的增加也将使得磁盘访问的 IO 次数增加,进而导致查询性能的下降;同时,高并发访问请求也使得集中 式数据库成为系统的最大瓶颈。 从可用性的方面来讲,服务化的无状态性,能够达到较小成本的随意扩容,这必然导致系统的最终压力 都落在数据库之上。而单一的数据节点,或者简单的主从 得复杂。使用多主多从的分片方式,可以有效 的避免数据单点,从而提升数据架构的可用性。 通过分库和分表进行数据的拆分来使得各个表的数据量保持在阈值以下,以及对流量进行疏导应对高访 问量,是应对高并发和海量数据系统的有效手段。数据分片的拆分方式又分为垂直分片和水平分片。 垂直分片 按照业务拆分的方式称为垂直分片,又称为纵向拆分,它的核心理念是专库专用。在拆分之前,一个数 据库由多个数据表构 可以在降低单表数据量的情况下, 尽量使用本地事务,善于使用同库不同表可有效避免分布式事务带来的麻烦。在不能避免跨库事务的场 景,有些业务仍然需要保持事务的一致性。而基于 XA 的分布式事务由于在并发度高的场景中性能无法满 足需要,并未被互联网巨头大规模使用,他们大多采用最终一致性的柔性事务代替强一致事务。 4.3. 数据分片 26 Apache ShardingSphere document0 码力 | 409 页 | 4.47 MB | 1 年前3
Apache ShardingSphere 中文文档 5.1.0海量 数据的场景。 从性能方面来说,由于关系型数据库大多采用 B+ 树类型的索引,在数据量超过阈值的情况下,索引深度 的增加也将使得磁盘访问的 IO 次数增加,进而导致查询性能的下降;同时,高并发访问请求也使得集中 式数据库成为系统的最大瓶颈。 从可用性的方面来讲,服务化的无状态性,能够达到较小成本的随意扩容,这必然导致系统的最终压力 都落在数据库之上。而单一的数据节点,或者简单的主从 得复杂。使用多主多从的分片方式,可以有效 的避免数据单点,从而提升数据架构的可用性。 通过分库和分表进行数据的拆分来使得各个表的数据量保持在阈值以下,以及对流量进行疏导应对高访 问量,是应对高并发和海量数据系统的有效手段。数据分片的拆分方式又分为垂直分片和水平分片。 垂直分片 按照业务拆分的方式称为垂直分片,又称为纵向拆分,它的核心理念是专库专用。在拆分之前,一个数 据库由多个数据表构 可以在降低单表数据量的情况下, 尽量使用本地事务,善于使用同库不同表可有效避免分布式事务带来的麻烦。在不能避免跨库事务的场 景,有些业务仍然需要保持事务的一致性。而基于 XA 的分布式事务由于在并发度高的场景中性能无法满 足需要,并未被互联网巨头大规模使用,他们大多采用最终一致性的柔性事务代替强一致事务。 4.3. 数据分片 26 Apache ShardingSphere document0 码力 | 406 页 | 4.40 MB | 1 年前3
Apache ShardingSphere 中文文档 5.0.0-alpha互联网的海量数据场景。 从性能方面来说,由于关系型数据库大多采用 B+ 树类型的索引,在数据量超过阈值的情况下,索引深度 的增加也将使得磁盘访问的 IO 次数增加,进而导致查询性能的下降;同时,高并发访问请求也使得集中 式数据库成为系统的最大瓶颈。 从可用性的方面来讲,服务化的无状态型,能够达到较小成本的随意扩容,这必然导致系统的最终压力 都落在数据库之上。而单一的数据节点,或者简单的主从 得复杂。使用多主多从的分片方式,可以有效 的避免数据单点,从而提升数据架构的可用性。 通过分库和分表进行数据的拆分来使得各个表的数据量保持在阈值以下,以及对流量进行疏导应对高访 问量,是应对高并发和海量数据系统的有效手段。数据分片的拆分方式又分为垂直分片和水平分片。 8 Apache ShardingSphere document, v5.0.0-beta 垂直分片 按照业务拆分的方 可以在降低单表数据量的情况下, 尽量使用本地事务,善于使用同库不同表可有效避免分布式事务带来的麻烦。在不能避免跨库事务的场 景,有些业务仍然需要保持事务的一致性。而基于 XA 的分布式事务由于在并发度高的场景中性能无法满 足需要,并未被互联网巨头大规模使用,他们大多采用最终一致性的柔性事务代替强一致事务。 3.1. 数据分片 10 Apache ShardingSphere document0 码力 | 301 页 | 3.44 MB | 1 年前3
Apache ShardingSphere 中文文档 5.1.2海量 数据的场景。 从性能方面来说,由于关系型数据库大多采用 B+ 树类型的索引,在数据量超过阈值的情况下,索引深度 的增加也将使得磁盘访问的 IO 次数增加,进而导致查询性能的下降;同时,高并发访问请求也使得集中 式数据库成为系统的最大瓶颈。 从可用性的方面来讲,服务化的无状态性,能够达到较小成本的随意扩容,这必然导致系统的最终压力 都落在数据库之上。而单一的数据节点,或者简单的主从 得复杂。使用多主多从的分片方式,可以有效 的避免数据单点,从而提升数据架构的可用性。 通过分库和分表进行数据的拆分来使得各个表的数据量保持在阈值以下,以及对流量进行疏导应对高访 问量,是应对高并发和海量数据系统的有效手段。数据分片的拆分方式又分为垂直分片和水平分片。 4.3. 数据分片 24 Apache ShardingSphere document, v5.1.2 垂直分片 按照 可以在降低单表数据量的情况下, 尽量使用本地事务,善于使用同库不同表可有效避免分布式事务带来的麻烦。在不能避免跨库事务的场 景,有些业务仍然需要保持事务的一致性。而基于 XA 的分布式事务由于在并发度高的场景中性能无法满 足需要,并未被互联网巨头大规模使用,他们大多采用最终一致性的柔性事务代替强一致事务。 4.3. 数据分片 26 Apache ShardingSphere document0 码力 | 446 页 | 4.67 MB | 1 年前3
Apache ShardingSphere 中文文档 5.2.03.1.4 应用场景 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 海量数据高并发的 OLTP 场景 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 海量数据实时分析 OLAP 场景 . . . . . 海量 数据的场景。 从性能方面来说,由于关系型数据库大多采用 B+ 树类型的索引,在数据量超过阈值的情况下,索引深度 的增加也将使得磁盘访问的 IO 次数增加,进而导致查询性能的下降;同时,高并发访问请求也使得集中 式数据库成为系统的最大瓶颈。 从可用性的方面来讲,服务化的无状态性,能够达到较小成本的随意扩容,这必然导致系统的最终压力 都落在数据库之上。而单一的数据节点,或者简单的主从 得复杂。使用多主多从的分片方式,可以有效 的避免数据单点,从而提升数据架构的可用性。 通过分库和分表进行数据的拆分来使得各个表的数据量保持在阈值以下,以及对流量进行疏导应对高访 问量,是应对高并发和海量数据系统的有效手段。数据分片的拆分方式又分为垂直分片和水平分片。 垂直分片 按照业务拆分的方式称为垂直分片,又称为纵向拆分,它的核心理念是专库专用。在拆分之前,一个数 据库由多个数据表构0 码力 | 449 页 | 5.85 MB | 1 年前3
Apache ShardingSphere 中文文档 5.0.0海量 数据的场景。 从性能方面来说,由于关系型数据库大多采用 B+ 树类型的索引,在数据量超过阈值的情况下,索引深度 的增加也将使得磁盘访问的 IO 次数增加,进而导致查询性能的下降;同时,高并发访问请求也使得集中 式数据库成为系统的最大瓶颈。 从可用性的方面来讲,服务化的无状态型,能够达到较小成本的随意扩容,这必然导致系统的最终压力 都落在数据库之上。而单一的数据节点,或者简单的主从 得复杂。使用多主多从的分片方式,可以有效 的避免数据单点,从而提升数据架构的可用性。 通过分库和分表进行数据的拆分来使得各个表的数据量保持在阈值以下,以及对流量进行疏导应对高访 问量,是应对高并发和海量数据系统的有效手段。数据分片的拆分方式又分为垂直分片和水平分片。 垂直分片 按照业务拆分的方式称为垂直分片,又称为纵向拆分,它的核心理念是专库专用。在拆分之前,一个数 据库由多个数据表构 可以在降低单表数据量的情况下, 尽量使用本地事务,善于使用同库不同表可有效避免分布式事务带来的麻烦。在不能避免跨库事务的场 景,有些业务仍然需要保持事务的一致性。而基于 XA 的分布式事务由于在并发度高的场景中性能无法满 足需要,并未被互联网巨头大规模使用,他们大多采用最终一致性的柔性事务代替强一致事务。 4.2. 数据分片 21 Apache ShardingSphere document0 码力 | 385 页 | 4.26 MB | 1 年前3
Apache ShardingSphere 中文文档 5.4.18.1.4 应用场景 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 海量数据高并发的 OLTP 场景 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 海量数据实时分析 OLAP 场景 . . . . . 海量 数据的场景。 从性能方面来说,由于关系型数据库大多采用 B+ 树类型的索引,在数据量超过阈值的情况下,索引深度 的增加也将使得磁盘访问的 IO 次数增加,进而导致查询性能的下降;同时,高并发访问请求也使得集中 式数据库成为系统的最大瓶颈。 从可用性的方面来讲,服务化的无状态性,能够达到较小成本的随意扩容,这必然导致系统的最终压力 都落在数据库之上。而单一的数据节点,或者简单的主从 得复杂。使用多主多从的分片方式,可以有效 的避免数据单点,从而提升数据架构的可用性。 通过分库和分表进行数据的拆分来使得各个表的数据量保持在阈值以下,以及对流量进行疏导应对高访 问量,是应对高并发和海量数据系统的有效手段。数据分片的拆分方式又分为垂直分片和水平分片。 垂直分片 按照业务拆分的方式称为垂直分片,又称为纵向拆分,它的核心理念是专库专用。在拆分之前,一个数 据库由多个数据表构0 码力 | 530 页 | 4.49 MB | 1 年前3
Apache ShardingSphere 中文文档 5.3.28.1.4 应用场景 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 海量数据高并发的 OLTP 场景 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 海量数据实时分析 OLAP 场景 . . . . . 海量 数据的场景。 从性能方面来说,由于关系型数据库大多采用 B+ 树类型的索引,在数据量超过阈值的情况下,索引深度 的增加也将使得磁盘访问的 IO 次数增加,进而导致查询性能的下降;同时,高并发访问请求也使得集中 式数据库成为系统的最大瓶颈。 从可用性的方面来讲,服务化的无状态性,能够达到较小成本的随意扩容,这必然导致系统的最终压力 都落在数据库之上。而单一的数据节点,或者简单的主从 得复杂。使用多主多从的分片方式,可以有效 的避免数据单点,从而提升数据架构的可用性。 通过分库和分表进行数据的拆分来使得各个表的数据量保持在阈值以下,以及对流量进行疏导应对高访 问量,是应对高并发和海量数据系统的有效手段。数据分片的拆分方式又分为垂直分片和水平分片。 垂直分片 按照业务拆分的方式称为垂直分片,又称为纵向拆分,它的核心理念是专库专用。在拆分之前,一个数 据库由多个数据表构0 码力 | 508 页 | 4.44 MB | 1 年前3
Apache ShardingSphere v5.5.0 中文文档8.1.4 应用场景 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 海量数据高并发的 OLTP 场景 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 海量数据实时分析 OLAP 场景 . . . . . 海量 数据的场景。 从性能方面来说,由于关系型数据库大多采用 B+ 树类型的索引,在数据量超过阈值的情况下,索引深度 的增加也将使得磁盘访问的 IO 次数增加,进而导致查询性能的下降;同时,高并发访问请求也使得集中 式数据库成为系统的最大瓶颈。 从可用性的方面来讲,服务化的无状态性,能够达到较小成本的随意扩容,这必然导致系统的最终压力 都落在数据库之上。而单一的数据节点,或者简单的主从 得复杂。使用多主多从的分片方式,可以有效 的避免数据单点,从而提升数据架构的可用性。 通过分库和分表进行数据的拆分来使得各个表的数据量保持在阈值以下,以及对流量进行疏导应对高访 问量,是应对高并发和海量数据系统的有效手段。数据分片的拆分方式又分为垂直分片和水平分片。 垂直分片 按照业务拆分的方式称为垂直分片,又称为纵向拆分,它的核心理念是专库专用。在拆分之前,一个数 据库由多个数据表构0 码力 | 557 页 | 4.61 MB | 1 年前3
Greenplum 精粹文集在那个测试中,测试性能也大幅低于 Greenplum(那个测试中,各厂 商基于客户提供的完全相同的硬件环境,Greenplum 是唯一一家完成 所有测试的,特别在混合负载测试中,Greenplum 的 80 并发耗时 3 个多小时就成功完成了,其它厂商大都没有完成此项测试,唯一完成 的一家耗时 40 多小时)。 Big Date2.indd 9 16-11-22 下午3:38 10 前文提到,得益于 的是并行计算能力,是对大任务、复杂任务的快速高效计算,但如果 你指望 MPP 并行数据库能够像 OLTP 数据库一样,在极短的时间处 理大量的并发小任务,这个并非 MPP 数据库所长。请牢记,并行和 并发是两个完全不同的概念,MPP 数据库是为了解决大问题而设计的 并行计算技术,而不是大量的小问题的高并发请求。 再通俗点说,Greenplum 主要定位在 OLAP 领域,利用 Greenplum MPP 数据库做大数据计算或分析平台非常适合,例如 具有很强数据操纵能力和过程语言的流程控制能力,SQL 语言是专 门为统计和数据分析开发的语言,各种功能和函数琳琅满目,SQL 语言不仅适合开发人员,也适用于分析业务人员,大幅简化了数据 的操作和交互过程。 而对 MapReduce 编程明显是困难的,在原生的 Mapreduce 开发 框架基础上的开发,需要技术人员谙熟于 JAVA 开发和并行原理, 不仅业务分析人员无法使用,甚至技术人员也难以学习和操控。为 了解决易用性的问题,近年来0 码力 | 64 页 | 2.73 MB | 1 年前3
共 84 条
- 1
- 2
- 3
- 4
- 5
- 6
- 9













