积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部后端开发(953)Java(241)Python(220)Spring(187)C++(117)Julia(87)Django(64)区块链(57)PHP(50)Conan(48)

语言

全部英语(780)中文(简体)(109)中文(繁体)(21)韩语(8)日语(7)德语(6)西班牙语(6)法语(6)俄语(6)

格式

全部PDF文档 PDF(772)其他文档 其他(177)PPT文档 PPT(4)
 
本次搜索耗时 0.026 秒,为您找到相关结果约 953 个.
  • 全部
  • 后端开发
  • Java
  • Python
  • Spring
  • C++
  • Julia
  • Django
  • 区块链
  • PHP
  • Conan
  • 全部
  • 英语
  • 中文(简体)
  • 中文(繁体)
  • 韩语
  • 日语
  • 德语
  • 西班牙语
  • 法语
  • 俄语
  • 全部
  • PDF文档 PDF
  • 其他文档 其他
  • PPT文档 PPT
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 Balancing Efficiency and Flexibility: Cost of Abstractions in Embedded Systems

    non-type template parameter74 Conclusions Zero-cost abstractions Encapsulation Inheritance Dynamic Polymorphism Static Polymorphism Negative-cost abstractions More C++ for the embedded world! Architecture
    0 码力 | 75 页 | 2.12 MB | 6 月前
    3
  • pdf文档 Node.js Client & Web Bridge Ready for ROS 2.0

    to Robotics) ● AI/ML/CV Software for ROS 2.0 ○ Object detection/segmentation/tracking/velocity estimation & etc. ○ A ROS service to support Intel® OpenVINO™ - the Open Visual Inference & Neural Network com/performance. •Cost reduction scenarios described are intended as examples of how a given Intel-based product, in the specified circumstances and configurations, may affect future costs and provide cost savings savings. Circumstances will vary. Intel does not guarantee any costs or cost reduction. •This document contains information on products, services and/or processes in development. All information provided
    0 码力 | 19 页 | 2.09 MB | 1 年前
    3
  • epub文档 Django Q Documentation Release 0.7.9

    call_command', 'clearsessions', schedule_type='H') Groups A group example with Kernel density estimation for probability density functions using the Parzen-window technique. Adapted from Sebastian Raschka’s Group example with Parzen-window estimation import numpy from django_q.tasks import async, result_group, delete_group # the estimation function def parzen_estimation(x_samples, point_x, h): k_n = # async them with a group label to the cache backend for w in widths: async(parzen_estimation, sample, x, w, group='parzen', cached=True) # return after 100 results return
    0 码力 | 62 页 | 514.67 KB | 1 年前
    3
  • pdf文档 Django Q Documentation Release 0.7.9

    with Kernel density estimation for probability density functions using the Parzen-window technique. Adapted from Sebastian Raschka’s blog # Group example with Parzen-window estimation import numpy from from django_q.tasks import async, result_group, delete_group # the estimation function def parzen_estimation(x_samples, point_x, h): k_n = 0 for row in x_samples: x_i = (point_x - row[:, numpy.newaxis]) array([[0], [0]]) # async them with a group label to the cache backend for w in widths: async(parzen_estimation, sample, x, w, group='parzen', cached=True) # return after 100 results return result_group('parzen'
    0 码力 | 50 页 | 397.77 KB | 1 年前
    3
  • pdf文档 Django Q Documentation Release 0.7.13

    with Kernel density estimation for probability density functions using the Parzen-window technique. Adapted from Sebastian Raschka’s blog # Group example with Parzen-window estimation import numpy from from django_q.tasks import async, result_group, delete_group # the estimation function def parzen_estimation(x_samples, point_x, h): k_n = 0 for row in x_samples: x_i = (point_x - row[:, numpy.newaxis]) array([[0], [0]]) # async them with a group label to the cache backend for w in widths: async(parzen_estimation, sample, x, w, group='parzen', cached=True) # return after 100 results return result_group('parzen'
    0 码力 | 56 页 | 416.37 KB | 1 年前
    3
  • pdf文档 Django Q Documentation Release 0.7.11

    with Kernel density estimation for probability density functions using the Parzen-window technique. Adapted from Sebastian Raschka’s blog # Group example with Parzen-window estimation import numpy from from django_q.tasks import async, result_group, delete_group # the estimation function def parzen_estimation(x_samples, point_x, h): k_n = 0 for row in x_samples: x_i = (point_x - row[:, numpy.newaxis]) array([[0], [0]]) # async them with a group label to the cache backend for w in widths: async(parzen_estimation, sample, x, w, group='parzen', cached=True) # return after 100 results return result_group('parzen'
    0 码力 | 54 页 | 412.45 KB | 1 年前
    3
  • epub文档 Django Q Documentation Release 0.7.10

    call_command', 'clearsessions', schedule_type='H') Groups A group example with Kernel density estimation for probability density functions using the Parzen-window technique. Adapted from Sebastian Raschka’s Group example with Parzen-window estimation import numpy from django_q.tasks import async, result_group, delete_group # the estimation function def parzen_estimation(x_samples, point_x, h): k_n = # async them with a group label to the cache backend for w in widths: async(parzen_estimation, sample, x, w, group='parzen', cached=True) # return after 100 results return
    0 码力 | 67 页 | 518.39 KB | 1 年前
    3
  • pdf文档 Django Q Documentation Release 0.7.12

    with Kernel density estimation for probability density functions using the Parzen-window technique. Adapted from Sebastian Raschka’s blog # Group example with Parzen-window estimation import numpy from from django_q.tasks import async, result_group, delete_group # the estimation function def parzen_estimation(x_samples, point_x, h): k_n = 0 for row in x_samples: x_i = (point_x - row[:, numpy.newaxis]) array([[0], [0]]) # async them with a group label to the cache backend for w in widths: async(parzen_estimation, sample, x, w, group='parzen', cached=True) # return after 100 results return result_group('parzen'
    0 码力 | 56 页 | 415.46 KB | 1 年前
    3
  • pdf文档 Django Q Documentation Release 0.7.10

    with Kernel density estimation for probability density functions using the Parzen-window technique. Adapted from Sebastian Raschka’s blog # Group example with Parzen-window estimation import numpy from from django_q.tasks import async, result_group, delete_group # the estimation function def parzen_estimation(x_samples, point_x, h): k_n = 0 for row in x_samples: x_i = (point_x - row[:, numpy.newaxis]) array([[0], [0]]) # async them with a group label to the cache backend for w in widths: async(parzen_estimation, sample, x, w, group='parzen', cached=True) # return after 100 results return result_group('parzen'
    0 码力 | 52 页 | 406.50 KB | 1 年前
    3
  • pdf文档 Django Q Documentation Release 0.7.17

    with Kernel density estimation for probability density functions using the Parzen-window technique. Adapted from Sebastian Raschka’s blog # Group example with Parzen-window estimation import numpy from from django_q.tasks import async, result_group, delete_group # the estimation function def parzen_estimation(x_samples, point_x, h): k_n = 0 for row in x_samples: x_i = (point_x - row[:, numpy.newaxis]) array([[0], [0]]) # async them with a group label to the cache backend for w in widths: async(parzen_estimation, sample, x, w, group='parzen', cached=True) # return after 100 results return result_group('parzen'
    0 码力 | 56 页 | 416.84 KB | 1 年前
    3
共 953 条
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 96
前往
页
相关搜索词
BalancingEfficiencyandFlexibilityCostofAbstractionsinEmbeddedSystemsNodejsClientWebBridgeReadyforROS2.0DjangoDocumentationRelease0.71311101217
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩