积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部后端开发(600)Python(155)UML(97)Go(63)PyWebIO(48)区块链(46)Rust(45)微服务(35)C++(28)架构设计(28)

语言

全部中文(简体)(455)英语(62)日语(13)德语(12)西班牙语(12)法语(12)韩语(12)俄语(12)中文(繁体)(1)

格式

全部PDF文档 PDF(481)其他文档 其他(87)PPT文档 PPT(31)DOC文档 DOC(1)
 
本次搜索耗时 0.012 秒,为您找到相关结果约 600 个.
  • 全部
  • 后端开发
  • Python
  • UML
  • Go
  • PyWebIO
  • 区块链
  • Rust
  • 微服务
  • C++
  • 架构设计
  • 全部
  • 中文(简体)
  • 英语
  • 日语
  • 德语
  • 西班牙语
  • 法语
  • 韩语
  • 俄语
  • 中文(繁体)
  • 全部
  • PDF文档 PDF
  • 其他文档 其他
  • PPT文档 PPT
  • DOC文档 DOC
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 Go性能优化概览-曹春晖

    业务性能优化概览 By Xargin 《Go 语⾔⾼级编程》合著者 Go contributor ⽬ 录 优化的前置知识 01 ⽣产环境的优化 02 Continuous profiling 03 优化的前置知识 第⼀部分 Latency numbers every programmer should know https://colin-scott.github.io/p goroutine 数量过多 -> 从 profile ⽹⻚进去看看 goroutine 都在⼲什 么 -> 查死锁、阻塞等问题 -> 个别不在意延迟的选择第三⽅库优 化 压测⼿段 公司内部压测平台 全链路压测 阻塞导致⾼延迟 在后端系统开发中,锁瓶颈是较常⻅的问题,⽐如⽂件锁 阻塞导致⾼延迟 还有⼀些公司的 metrics 系统设计,本机上会有 udp 通信 阻塞导致⾼延迟 锁瓶颈的⼀般优化⼿段: go#L930 内存占⽤过⾼-堆分配导致内存过⾼ https://github.com/golang/go/pull/42036#issuecomment-715046540 怎么样说服官⽅接受性能优化的 PR 内存占⽤过⾼-goroutine 数量太多导致内存占⽤⾼ 这些内存的构成部分: 1. Goroutine 栈占⽤的内存(难优化,⼀条 tcp 连接⾄少对应⼀个 goroutine)
    0 码力 | 40 页 | 8.69 MB | 1 年前
    3
  • pdf文档 4 Python机器学习性能优化

    Python机器学习性能优化 以BERT服务为例例,从1到1000 刘欣 ⽬目录 CONTENTS 1. 优化的哲学 2. 了解你的资源 3. 定位性能瓶颈 4. 动⼿优化 1. 优化的哲学 "There ain't no such thing as a free lunch" Ahmdal’s Law • 系统整体的优化,取决于热点部分的占⽐比和该部分的加速程度 No Free Flask Production Server • gunicorn 多进程解决多核利利⽤用率问题 • gevent 协程替代多线程⽹网络模型 • 更更⾼高效的序列列化lib 3 定位性能瓶颈 Profile before Optimizing Python Profilers • time.time() • cProfile • line profiler • pyflame 放个截图 cProfile • 倒序打印 & graph pyflame • 插桩 or 采样 • 放个flamegraph • 开源地址 wrk • 制造压⼒力力 • 挖掘整体性能瓶颈 • 实现⾮非常精妙的压⼒力力⼯工具,强烈烈安利利(要不不要写个py binding) 4 动⼿优化 多线程服务器的问题 • 每个请求单独进GPU,利利⽤用率不不⾼高 • ⼤大量量请求并⾏行行,CUDA会爆
    0 码力 | 38 页 | 2.25 MB | 1 年前
    3
  • ppt文档 C++高性能并行编程与优化 - 课件 - 性能优化之无分支编程 Branchless Programming

    性能优化 之 无分支编程 Branchless Programming by 彭于斌( @archibate ) 两种代码写法:分支 vs 三目运算符 两种使用方式:排序 vs 不排序 测试结果(均为 gcc -O3 ) 测试结果可视化 图表比较:分支 vs 无分支 分支 无分支 0 0.01 0.02 0.03 耗时(越低越好) 乱序 有序 • 传统的分支方法实现的 uppercase ,对于 排序过的数据明显比乱序时高效。 • 无分支的方法对于乱序和有序的数据一样 高效,性能吊打了传统的分支方法。 • 对于传统分支的做法,为什么排序了的更 高效?既然无分支更高效,我要怎样优化 才能让我的程序变成无分支的呢?那就来 看本期性能优化专题课吧! 分支预测成败对性能的影响 排序为什么对有分支的版本影响那么大 为什么需要流水线 • 为了高效, CPU 的内部其实是一个流水 、 90% 、 99% 直到有一次, 突然出现了一次分支 B 成功的案例, CPU 瞬间被打脸!不得不浪费 99% 已经填满 A 数 据的流水线清空,重启整个流水线,这就是分支预测失败,他是导致分支性能低下的罪魁祸 首。不过被打了一次脸的 CPU 还不敢相信,觉得这可能只是碰巧,下一次还是会执行分 支 A 的吧,所以他只是把分支 A 的比例下调到 80% ,直到第二次又被打脸,下调到最初 的起点 50%……
    0 码力 | 47 页 | 8.45 MB | 1 年前
    3
  • pdf文档 对 Go 程序进行可靠的性能测试

    对 Go 程序进行可靠的性能测试 Changkun Ou https://changkun.de/s/gobench/ Go 夜读系列 |talkgo.org|Talk Go|第 83 期 March 26, 2020 # Go 1.13 / 1.14 2020 © Changkun Ou · Go 夜读 · 对 Go 程序进行可靠的性能测试 主要内容 ● 可靠的测试环境 ● benchstat 对代码块进行性能调优 ○ 例2: Benchmark 的正确性分析 ○ 例3: 其他的影响因素 ● 假设检验的原理 ● 局限与应对措施 ● 总结 2020 © Changkun Ou · Go 夜读 · 对 Go 程序进行可靠的性能测试 教科书式的性能测试方法论 3 在《Software Testing: Principles and Practices》一书中归纳的性能测试方法论: 搜集需求 2. 编写测试用例 3. 自动化性能测试用例 4. 执行性能测试用例 5. 分析性能测试结果 6. 性能调优 7. 性能基准测试(Performance Benchmarking) 8. 向客户推荐合适的配置 可靠的测试环境 2020 © Changkun Ou · Go 夜读 · 对 Go 程序进行可靠的性能测试 什么是可靠的性能基准测试环境 5 影响测试环境的软硬件因素
    0 码力 | 37 页 | 1.23 MB | 1 年前
    3
  • pdf文档 2.7 Golang与高性能DSP竞价系统

    专业DSP解决⽅方案供应商 Golang与⾼高性能DSP竞价系统 By @QLeelulu 专业DSP解决⽅方案 © ⼲⼴广州舜⻜飞信息科技有限公司 All Right ReservedAll Right Reserved • RTB: Real-time Bidding,实时竞价,允许⼲⼴广告买家根据 活动⺫⽬目标、⺫⽬目标⼈人群以及费⽤用⻔门槛等因素对每⼀一个⼲⼴广告 及每次⼲⼴广告展⽰示的费⽤用进⾏行竞价。 及每次⼲⼴广告展⽰示的费⽤用进⾏行竞价。 • DSP: Demand Side Platform,需求⽅方平台,允许⼲⼴广告客 户和⼲⼴广告机构更⽅方便地访问,以及更有效地购买⼲⼴广告 库存,因为该平台汇集了各种⼲⼴广告交易平台的库存。 什么是RTB与DSP 专业DSP解决⽅方案 © ⼲⼴广州舜⻜飞信息科技有限公司 All Right ReservedAll Right Reserved http包的HelloWorld性能测试 为什么选择Golang Via: http://www.cnblogs.com/QLeelulu/archive/2012/08/12/2635261.html 专业DSP解决⽅方案 © ⼲⼴广州舜⻜飞信息科技有限公司 All Right ReservedAll Right Reserved • ⾼高性能、天⽣生并发⽀支持 • 性能敏感的模块可以直接使⽤用C编写(当时是这么认为的)
    0 码力 | 51 页 | 5.09 MB | 1 年前
    3
  • pdf文档 IPC性能极致优化方案-RPAL落地实践

    IPC性能极致优化方案-RPAL落地实践 谢正尧 字节跳动 研发工程师 目 录 方案诞生的背景 01 全进程地址空间共享与保护 02 用户态进程切换 03 高效的Go Event Poller 04 RPC框架Kitex集成 05 性能收益与业务展望 06 方案诞生的背景 第一部分 方案诞生的背景 几种常见的同机通信场景: 1. 微服务合并部署(亲和性部署、sidecar 常见的本地通信方案:回环 IP、UDS、共享内存IPC 方案诞生的背景 以性能较优的 IPC 方案 share memory ipc 为例分析性能瓶颈: 注:方案 github 地址:https://github.com/cloudwego/shmipc-go 方案诞生的背景 方案诞生的背景 IPC 的性能瓶颈有哪些: 1. 系统特权级切换; 2. 异步线程唤醒/休眠(事件通知); 异步线程唤醒/休眠(事件通知); 3. 数据拷贝(序列化/反序列化); 方案诞生的背景 能不能把库函数调用的高性能优势做到 IPC 里面,降低进程间的事件通知和数据拷贝开销? 以go-go微服务 RPC 通信场景为例,该问题可以抽象为,如何高效地在两个 go runtime 间进行函数调用? 方案诞生的背景 基于以上问题,我们最终引入了 RPAL(Run Process As Library) 方案,基于跨进程虚拟地址
    0 码力 | 39 页 | 2.98 MB | 1 年前
    3
  • pdf文档 高性能高可用机票实时搜索系统

    ⾼性能⾼可⽤机票实时搜索系统 去哪⼉⺴ 梁启康 议题 系统诉求 海海量量数据 设计思路路 搜索框架 报价引擎 待解问题 系统诉求 • 全⽹网价最低 • 航线报价最全 • 实时性最好 • 产品最丰富 • 预定最流畅 ⾯面临问题 航班舱位时刻变动 供应商规则调整密集 航司政策各有不不同 供应商的office权限不不⼀一致 运价规则变化繁多 GDS数据成本不不菲 • Date • Integer • Set • byte, byte[] • short, short[] • int, int[] • obj pool 报价引擎 — 性能优化 • 异步、并⾏行行、⽆无锁化 • 剪枝 • 空间换时间 • 缩短对象驻留留内存时间,减少gc次数,优化单机吞吐 • 数据交换采⽤用protobuf + gzip处理理 •
    0 码力 | 26 页 | 1.94 MB | 1 年前
    3
  • pdf文档 202309 MeterSphere ⼀站式开源持续测试平台

    ⼀站式开源持续测试平台 2023 年 9 ⽉ 1 2 持续测试的兴起与现状 3 MeterSphere 加速企业持续测试落地 MeterSphere 企业版及专业服务 持续测试是持续交付发展的必然需求 持续交付可以降低发布⻛险,提⾼可靠性,使 软件能够根据⽤户反馈、市场变化和企业战略 变更不断进⾏调整。 持续交付能⼒是企业核⼼竞争⼒ 持续测试能⼒保障业务⾜够可靠 持续测试是执⾏⾃动化测试的过程,作为软件 造成测试阻塞的三个⽅⾯ 测试平台是提⾼⽣产能效最⾼效⽅法之⼀ 开发中 等待测试 测试中 建设测试平台,提升测试整体的吞吐量 测试跟踪 测试计划 测试环境 测试数据 测试资源 API 项⽬ 管理 ⼈员 管理 接⼝ 测试 功能 测试 性能 测试 UI 测试 其他 测试 从系统⻆⾊的⻆度来看,下游的 ⽣产⼒决定上游的⽣产速度。通 过测试平台的建设,最终推动研 发效能的提升。 MeterSphere 加速企业持续测试落地 MeterSphere 企业版及专业服务 MeterSphere 的使命 MeterSphere 是⼀站式的开源持续测试平台,遵循 GPL v3 开源许可协议,涵盖测试 管理、接⼝测试、UI 测试和性能测试等功能,全⾯兼容 JMeter、Selenium 等主流开 源标准,有效助⼒开发和测试团队充分利⽤云弹性进⾏⾼度可扩展的⾃动化测试,加 速⾼质量的软件交付。
    0 码力 | 45 页 | 4.65 MB | 1 年前
    3
  • pdf文档 基于Go的大数据平台-党合萱

    基于Go的⼤大数据平台 七⽜牛云—党合萱 什什么是Pandora 简单 · 可信赖 Pandora架构图 Export Service API / Portal / 消息 消息 计算 计算 消息 导出任务 导出任务 导出任务 导出任务 导出任务 计算 消息
    0 码力 | 34 页 | 1.26 MB | 1 年前
    3
  • pdf文档 海尔实时计算平台技术选型与实践

    海尔实时计算平台技术选型与实践 海尔电器-肖云 个人介绍 • 方正电子新媒体开发总监 • 中投视讯研发总监 • 海尔电器资深架构师 公司介绍 海尔 电器 日日顺 物流 贝业 物流 快递柜 。。。 跨境 电商 健康 水站 盛丰 物流 概要 • 实时计算平台背景 • 开源技术选型与实践 • 开源技术改造经验 背景-海尔大数据总体规划 实时计算平台框架 存 储 服 Flink Ganglia Sqoop zeppelin Saiku Caravel CBoard Nagios 实时数据采集技术选型要求 • 完整 • 低延时 • 不影响业务系统性能 代码埋点: • 优点:采集能力强 • 缺点:时间、人力成本大 实时数据采集-数据如何获取? 可视化埋点: • 优点:成本低,速度快 • 缺点:行为记录信息少,支持的分析方式少 • Flume Mysql CDC可选方案: • Canal Postgresql CDC 建议方案 BottledWater: • 支持postgresql 9.4及以后版本 • 几乎不影响数据库本身性能 • 事务一致性的输出 • 容错 上图摘自confluent官网 Flume适合: • 日志收集 • 日志传输 • 拦截数据 消息队列适合: • 消息持久化 • 解耦 推荐:Flume+
    0 码力 | 41 页 | 3.21 MB | 1 年前
    3
共 600 条
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 60
前往
页
相关搜索词
Go性能优化概览春晖Python机器学习C++高性高性能并行编程课件程序进行可靠测试2.7GolangDSP竞价系统IPC极致方案RPAL落地实践可用机票实时搜索202309MeterSphere开源持续平台基于数据党合海尔计算技术选型
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩