积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部后端开发(123)区块链(42)Python(25)Go(11)Java(8)C++(8)Swift(7)C#(6)C语言(4)Rust(4)

语言

全部中文(简体)(95)英语(17)中文(繁体)(10)

格式

全部PDF文档 PDF(95)其他文档 其他(28)
 
本次搜索耗时 0.046 秒,为您找到相关结果约 123 个.
  • 全部
  • 后端开发
  • 区块链
  • Python
  • Go
  • Java
  • C++
  • Swift
  • C#
  • C语言
  • Rust
  • 全部
  • 中文(简体)
  • 英语
  • 中文(繁体)
  • 全部
  • PDF文档 PDF
  • 其他文档 其他
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 微服务容灾治理

    处理的请求数 • ⼀个请求的处理时⻓保守估算为 minRt ,所以 maxPass * windows * minRt / 1000 代 表着系统能处理的保守并发数。这⾥相对⽐较难理解,可以想想⼀个请求的时间跨度为 minRt , 那么把每秒的请求数 maxPass * windows 平铺到1s的时间线上,是不是任意点的并发请求数 可以估算为 QPS * minRt / 1000 1000 。从概率的⻆度可以理解为均匀分布的区间积分,即1秒内 均匀分布的n个请求,在minRt区间上的请求数量。 如果当前并发请求数⼤于这⾥算出的系统容量,那么就会拒绝请求,所以这⾥估算系统容量是关键所 在,也是整个算法最难理解的部分。 附⼀个图来说明怎么计算任⼀时间点的并发请求数的,假设QPS是1000,每个请求的 minRt 是 10ms。 3.3CPU负载反馈因⼦ 则CPU依然有可 能越来越靠近100%。 反馈因⼦计算公式如下: 反馈因⼦的效果类似于神经⽹络中的ReLU激活函数。其中0.1(兜底的经验值)是⽤来保证不管负载 多⾼,⾄少放过估算出来的系统容量的10%的请求,否则整个服务就完全不可⽤了。CPU负载反馈因 ⼦随着CPU负载的变化如下图: 对⽐有⽆CPU反馈因⼦的情况: • 加了反馈因⼦后能接受更多请求,
    0 码力 | 13 页 | 1.68 MB | 1 年前
    3
  • pdf文档 Hello 算法 1.0.0b1 Java版

    ,而在输入数据量较大时,测试结果截然相反。因此,若想要达 到具有说服力的对比结果,那么需要输入各种体量数据,这样的测试需要占用大量计算资源。 理论估算 既然实际测试具有很大的局限性,那么我们是否可以仅通过一些计算,就获知算法的效率水平呢?答案 是肯定的,我们将此估算方法称为「复杂度分析 Complexity Analysis」或「渐近复杂度分析 Asymptotic Complexity Analysis」。 hello‑algo.com 15 Figure 2‑1. 算法 A, B, C 的时间增长趋势 相比直接统计算法运行时间,时间复杂度分析的做法有什么好处呢?以及有什么不足? 时间复杂度可以有效评估算法效率。算法 B 运行时间的增长是线性的,在 ? > 1 时慢于算法 A ,在 ? > 1000000 时慢于算法 C 。实质上,只要输入数据大小 ? 足够大,复杂度为「常数阶」的算法一定优于 「 「计算操作的数量」,这是因为,无论是运行平台还是计算操作类型,都与算法运行时间的增长趋势无关。因而, 我们可以简单地将所有计算操作的执行时间统一看作是相同的“单位时间”,这样的简化做法大大降低了估算 难度。 时间复杂度也存在一定的局限性。比如,虽然算法 A 和 C 的时间复杂度相同,但是实际的运行时间有非常大的 差别。再比如,虽然算法 B 比 C 的时间复杂度要更高,但在输入数据大小 ?
    0 码力 | 186 页 | 14.71 MB | 1 年前
    3
  • pdf文档 Hello 算法 1.0.0b1 Swift版

    ,而在输入数据量较大时,测试结果截然相反。因此,若想要达 到具有说服力的对比结果,那么需要输入各种体量数据,这样的测试需要占用大量计算资源。 理论估算 既然实际测试具有很大的局限性,那么我们是否可以仅通过一些计算,就获知算法的效率水平呢?答案 是肯定的,我们将此估算方法称为「复杂度分析 Complexity Analysis」或「渐近复杂度分析 Asymptotic Complexity Analysis」。 hello‑algo.com 15 Figure 2‑1. 算法 A, B, C 的时间增长趋势 相比直接统计算法运行时间,时间复杂度分析的做法有什么好处呢?以及有什么不足? 时间复杂度可以有效评估算法效率。算法 B 运行时间的增长是线性的,在 ? > 1 时慢于算法 A ,在 ? > 1000000 时慢于算法 C 。实质上,只要输入数据大小 ? 足够大,复杂度为「常数阶」的算法一定优于 「 「计算操作的数量」,这是因为,无论是运行平台还是计算操作类型,都与算法运行时间的增长趋势无关。因而, 我们可以简单地将所有计算操作的执行时间统一看作是相同的“单位时间”,这样的简化做法大大降低了估算 难度。 时间复杂度也存在一定的局限性。比如,虽然算法 A 和 C 的时间复杂度相同,但是实际的运行时间有非常大的 差别。再比如,虽然算法 B 比 C 的时间复杂度要更高,但在输入数据大小 ?
    0 码力 | 190 页 | 14.71 MB | 1 年前
    3
  • pdf文档 Hello 算法 1.0.0b1 Python版

    ,而在输入数据量较大时,测试结果截然相反。因此,若想要达 到具有说服力的对比结果,那么需要输入各种体量数据,这样的测试需要占用大量计算资源。 理论估算 既然实际测试具有很大的局限性,那么我们是否可以仅通过一些计算,就获知算法的效率水平呢?答案 是肯定的,我们将此估算方法称为「复杂度分析 Complexity Analysis」或「渐近复杂度分析 Asymptotic Complexity Analysis」。 hello‑algo.com 15 Figure 2‑1. 算法 A, B, C 的时间增长趋势 相比直接统计算法运行时间,时间复杂度分析的做法有什么好处呢?以及有什么不足? 时间复杂度可以有效评估算法效率。算法 B 运行时间的增长是线性的,在 ? > 1 时慢于算法 A ,在 ? > 1000000 时慢于算法 C 。实质上,只要输入数据大小 ? 足够大,复杂度为「常数阶」的算法一定优于 「 「计算操作的数量」,这是因为,无论是运行平台还是计算操作类型,都与算法运行时间的增长趋势无关。因而, 我们可以简单地将所有计算操作的执行时间统一看作是相同的“单位时间”,这样的简化做法大大降低了估算 难度。 时间复杂度也存在一定的局限性。比如,虽然算法 A 和 C 的时间复杂度相同,但是实际的运行时间有非常大的 差别。再比如,虽然算法 B 比 C 的时间复杂度要更高,但在输入数据大小 ?
    0 码力 | 178 页 | 14.67 MB | 1 年前
    3
  • pdf文档 Hello 算法 1.0.0b1 C++版

    ,而在输入数据量较大时,测试结果截然相反。因此,若想要达 到具有说服力的对比结果,那么需要输入各种体量数据,这样的测试需要占用大量计算资源。 理论估算 既然实际测试具有很大的局限性,那么我们是否可以仅通过一些计算,就获知算法的效率水平呢?答案 是肯定的,我们将此估算方法称为「复杂度分析 Complexity Analysis」或「渐近复杂度分析 Asymptotic Complexity Analysis」。 hello‑algo.com 15 Figure 2‑1. 算法 A, B, C 的时间增长趋势 相比直接统计算法运行时间,时间复杂度分析的做法有什么好处呢?以及有什么不足? 时间复杂度可以有效评估算法效率。算法 B 运行时间的增长是线性的,在 ? > 1 时慢于算法 A ,在 ? > 1000000 时慢于算法 C 。实质上,只要输入数据大小 ? 足够大,复杂度为「常数阶」的算法一定优于 「 「计算操作的数量」,这是因为,无论是运行平台还是计算操作类型,都与算法运行时间的增长趋势无关。因而, 我们可以简单地将所有计算操作的执行时间统一看作是相同的“单位时间”,这样的简化做法大大降低了估算 难度。 时间复杂度也存在一定的局限性。比如,虽然算法 A 和 C 的时间复杂度相同,但是实际的运行时间有非常大的 差别。再比如,虽然算法 B 比 C 的时间复杂度要更高,但在输入数据大小 ?
    0 码力 | 187 页 | 14.71 MB | 1 年前
    3
  • pdf文档 Hello 算法 1.0.0b1 Golang版

    ,而在输入数据量较大时,测试结果截然相反。因此,若想要达 到具有说服力的对比结果,那么需要输入各种体量数据,这样的测试需要占用大量计算资源。 理论估算 既然实际测试具有很大的局限性,那么我们是否可以仅通过一些计算,就获知算法的效率水平呢?答案 是肯定的,我们将此估算方法称为「复杂度分析 Complexity Analysis」或「渐近复杂度分析 Asymptotic Complexity Analysis」。 hello‑algo.com 15 Figure 2‑1. 算法 A, B, C 的时间增长趋势 相比直接统计算法运行时间,时间复杂度分析的做法有什么好处呢?以及有什么不足? 时间复杂度可以有效评估算法效率。算法 B 运行时间的增长是线性的,在 ? > 1 时慢于算法 A ,在 ? > 1000000 时慢于算法 C 。实质上,只要输入数据大小 ? 足够大,复杂度为「常数阶」的算法一定优于 「 「计算操作的数量」,这是因为,无论是运行平台还是计算操作类型,都与算法运行时间的增长趋势无关。因而, 我们可以简单地将所有计算操作的执行时间统一看作是相同的“单位时间”,这样的简化做法大大降低了估算 难度。 时间复杂度也存在一定的局限性。比如,虽然算法 A 和 C 的时间复杂度相同,但是实际的运行时间有非常大的 差别。再比如,虽然算法 B 比 C 的时间复杂度要更高,但在输入数据大小 ?
    0 码力 | 190 页 | 14.71 MB | 1 年前
    3
  • pdf文档 Hello 算法 1.0.0b2 Java版

    ,而在输入数据量较大时,测试结果截然相反。因此,若想要达 到具有说服力的对比结果,那么需要输入各种体量数据,这样的测试需要占用大量计算资源。 理论估算 既然实际测试具有很大的局限性,那么我们是否可以仅通过一些计算,就获知算法的效率水平呢?答案 是肯定的,我们将此估算方法称为「复杂度分析 Complexity Analysis」或「渐近复杂度分析 Asymptotic Complexity Analysis」。 hello‑algo.com 15 Figure 2‑1. 算法 A, B, C 的时间增长趋势 相比直接统计算法运行时间,时间复杂度分析的做法有什么好处呢?以及有什么不足? 时间复杂度可以有效评估算法效率。算法 B 运行时间的增长是线性的,在 ? > 1 时慢于算法 A ,在 ? > 1000000 时慢于算法 C 。实质上,只要输入数据大小 ? 足够大,复杂度为「常数阶」的算法一定优于 「 「计算操作的数量」,这是因为,无论是运行平台还是计算操作类型,都与算法运行时间的增长趋势无关。因而, 我们可以简单地将所有计算操作的执行时间统一看作是相同的“单位时间”,这样的简化做法大大降低了估算 难度。 时间复杂度也存在一定的局限性。比如,虽然算法 A 和 C 的时间复杂度相同,但是实际的运行时间有非常大的 差别。再比如,虽然算法 B 比 C 的时间复杂度要更高,但在输入数据大小 ?
    0 码力 | 197 页 | 15.72 MB | 1 年前
    3
  • pdf文档 Hello 算法 1.0.0b2 Swift版

    ,而在输入数据量较大时,测试结果截然相反。因此,若想要达 到具有说服力的对比结果,那么需要输入各种体量数据,这样的测试需要占用大量计算资源。 理论估算 既然实际测试具有很大的局限性,那么我们是否可以仅通过一些计算,就获知算法的效率水平呢?答案 是肯定的,我们将此估算方法称为「复杂度分析 Complexity Analysis」或「渐近复杂度分析 Asymptotic Complexity Analysis」。 hello‑algo.com 15 Figure 2‑1. 算法 A, B, C 的时间增长趋势 相比直接统计算法运行时间,时间复杂度分析的做法有什么好处呢?以及有什么不足? 时间复杂度可以有效评估算法效率。算法 B 运行时间的增长是线性的,在 ? > 1 时慢于算法 A ,在 ? > 1000000 时慢于算法 C 。实质上,只要输入数据大小 ? 足够大,复杂度为「常数阶」的算法一定优于 「 「计算操作的数量」,这是因为,无论是运行平台还是计算操作类型,都与算法运行时间的增长趋势无关。因而, 我们可以简单地将所有计算操作的执行时间统一看作是相同的“单位时间”,这样的简化做法大大降低了估算 难度。 时间复杂度也存在一定的局限性。比如,虽然算法 A 和 C 的时间复杂度相同,但是实际的运行时间有非常大的 差别。再比如,虽然算法 B 比 C 的时间复杂度要更高,但在输入数据大小 ?
    0 码力 | 199 页 | 15.72 MB | 1 年前
    3
  • pdf文档 Hello 算法 1.0.0b2 Python版

    ,而在输入数据量较大时,测试结果截然相反。因此,若想要达 到具有说服力的对比结果,那么需要输入各种体量数据,这样的测试需要占用大量计算资源。 理论估算 既然实际测试具有很大的局限性,那么我们是否可以仅通过一些计算,就获知算法的效率水平呢?答案 是肯定的,我们将此估算方法称为「复杂度分析 Complexity Analysis」或「渐近复杂度分析 Asymptotic Complexity Analysis」。 hello‑algo.com 15 Figure 2‑1. 算法 A, B, C 的时间增长趋势 相比直接统计算法运行时间,时间复杂度分析的做法有什么好处呢?以及有什么不足? 时间复杂度可以有效评估算法效率。算法 B 运行时间的增长是线性的,在 ? > 1 时慢于算法 A ,在 ? > 1000000 时慢于算法 C 。实质上,只要输入数据大小 ? 足够大,复杂度为「常数阶」的算法一定优于 「 「计算操作的数量」,这是因为,无论是运行平台还是计算操作类型,都与算法运行时间的增长趋势无关。因而, 我们可以简单地将所有计算操作的执行时间统一看作是相同的“单位时间”,这样的简化做法大大降低了估算 难度。 时间复杂度也存在一定的局限性。比如,虽然算法 A 和 C 的时间复杂度相同,但是实际的运行时间有非常大的 差别。再比如,虽然算法 B 比 C 的时间复杂度要更高,但在输入数据大小 ?
    0 码力 | 186 页 | 15.69 MB | 1 年前
    3
  • pdf文档 Hello 算法 1.0.0b2 C++版

    ,而在输入数据量较大时,测试结果截然相反。因此,若想要达 到具有说服力的对比结果,那么需要输入各种体量数据,这样的测试需要占用大量计算资源。 理论估算 既然实际测试具有很大的局限性,那么我们是否可以仅通过一些计算,就获知算法的效率水平呢?答案 是肯定的,我们将此估算方法称为「复杂度分析 Complexity Analysis」或「渐近复杂度分析 Asymptotic Complexity Analysis」。 hello‑algo.com 15 Figure 2‑1. 算法 A, B, C 的时间增长趋势 相比直接统计算法运行时间,时间复杂度分析的做法有什么好处呢?以及有什么不足? 时间复杂度可以有效评估算法效率。算法 B 运行时间的增长是线性的,在 ? > 1 时慢于算法 A ,在 ? > 1000000 时慢于算法 C 。实质上,只要输入数据大小 ? 足够大,复杂度为「常数阶」的算法一定优于 「 「计算操作的数量」,这是因为,无论是运行平台还是计算操作类型,都与算法运行时间的增长趋势无关。因而, 我们可以简单地将所有计算操作的执行时间统一看作是相同的“单位时间”,这样的简化做法大大降低了估算 难度。 时间复杂度也存在一定的局限性。比如,虽然算法 A 和 C 的时间复杂度相同,但是实际的运行时间有非常大的 差别。再比如,虽然算法 B 比 C 的时间复杂度要更高,但在输入数据大小 ?
    0 码力 | 197 页 | 15.72 MB | 1 年前
    3
共 123 条
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 13
前往
页
相关搜索词
服务容灾治理Hello算法1.00b1JavaSwiftPythonC++Golang0b2
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩