Curve元数据节点高可用© XXX Page 1 of 30 Curve元数据节点高可用© XXX Page 2 of 30 1. 需求 2. 技术选型 3. etcd clientv3的concurrency介绍 3.1 etcd clientV3的concurrency模块构成 3.2 Campaign的流程 3.2.1 代码流程说明 3.2.2 举例说明Campagin流程 3.3 Observe的流程 Etcd集群与MDS1(当前leader)出现网络分区 4.2.5.1 事件一先发生 4.2.5.2 事件二先发生 4.2.6 异常情况4:Etcd集群的follower节点异常 4.2.7 各情况汇总 1. 需求 mds是元数据节点,负责空间分配,集群状态监控,集群节点间的资源均衡等,mds故障可能会导致client端无法写入。 因此,mds需要做高可用。满足多个mds, 但同时只有一个mds节点提供服务,称该提供服务的 的就是zookeeper和etcd, 考虑当前系统中mds有两个外部依赖模块,一是mysql, 用于存储集群拓扑的相关信息;二是etcd,用于存储文件的元数据信息。而etcd可以用于实现mds高可用,没必要引入其他组件。 使用etcd实现元数据节点的leader主要依赖于它的两个核心机制: TTL和CAS。TTL(time to live)指的是给一个key设置一个有效期,到期后key会被自动删0 码力 | 30 页 | 2.42 MB | 6 月前3
Curve文件系统元数据管理of 24 Curve文件系统元数据管理(已实现)© XXX Page 2 of 24 1. 2. 3. 4. Inode 1、设计一个分布式文件系统需要考虑的点: 2、其他文件系统的调研总结 3、各内存结构体 4、curve文件系统的元数据内存组织 4.1 inode定义: 4.2 dentry的定义: 4.3 内存组织 5 元数据分片 5.1 分片方式一:in 1、设计一个分布式文件系统需要考虑的点: 文件系统的元数据是否全缓存? 元数据持久化在单独的元数据服务器上?在磁盘上?在volume上? inode+dentry方式?当前curve块存储的kv方式? 是否有单独的元数据管理服务器? 2、其他文件系统的调研总结 fs 中心化元数据 内存namespace元数据 内存空间分配元数据 元数据持久化 元数据扩展 小文件优化 空间管理单位 数据持久化 其他© XXX Page moosefs(mfs) 有元数据服务器 全内存 fsnode → hashtable(inode id) fsedge → hashtable (parent inode + name) 全内存 chunk → hashtable(chunk id) log + dump record 差 否 chunk 链式多副本 overwirte有数据不一致风险 chubaofs(cfs) 有元数据服务器 inode0 码力 | 24 页 | 204.67 KB | 6 月前3
Curve文件系统元数据Proto(接口定义)© XXX Page 1 of 15 curve文件系统元数据proto(代码接口定义,已实现)© XXX Page 2 of 15 1、代码结构和代码目录 curve文件系统是相对于curve块设备比较独立的一块,在当前curve项目的目录下,增加一个一级目录curvefs,curvefs下有自己独立的proto\src\test。 2、文件系统proto定义 2.1 mds.proto0 码力 | 15 页 | 80.33 KB | 6 月前3
Curve文件系统元数据持久化方案设计© XXX Page 1 of 12 元数据持久化© XXX Page 2 of 12 前言 Raft Log Raft Snapshot 持久化文件 key_value_pairs 其他说明 实现 1、inode、entry 的编码 2、KVStore Q&A 单靠 redis 的 AOF 机制能否保证数据不丢失? redis 的高可用、高可扩方案? redis + muliraft 存在的问题? redis 改造 vs 自己实现? redis 中哈希表实现的优点? 参考 前言 根据之前讨论的结果,元数据节点的架构如下图所示,这里涉及到两部分需要持久化/编码的内容: Raft Log:记录 operator log Raft Snapshot:将内存中的数据结构以特定格式 dump 到文件进行持久化© XXX Page 3 of 12 Raft Log +------+ -----------+---------+ 持久化文件 字段 字节数 说明 CURVEFS 7 magic number(常量字符 "CURVEFS"),用于标识该文件为 curvefs 元数据持久化文件 version 4 文件版本号(当文件格式变化时,可以 100% 向后兼容加载旧版持久化文件) size 8 键值对数量 key_value_pairs / 键值对(当 size 为0 码力 | 12 页 | 384.47 KB | 6 月前3
高性能 Kubernetes 元数据存储 KubeBrain 的设计思路和落地效果-许辰KubeBrain 字节跳动高性能 K8s 元信息存储 许辰 字节跳动资深研发工程师 许 辰 字节跳动基础架构工程师 本科和硕士毕业于北京大学计算机系 负责大规模 Kubernetes 系统的构建和优化 KubeBrain/ KubeGateway/ KubeZoo 等多个项目的发起人 • 背景介绍 • 设计思路 • 性能优化 • 落地效果 • 未来演进 背景 背景 • Kubernetes 规模增大 10 倍以上 公司业务快速发展 存储、大数据、机器学习等场景云原生化 • 新场景对 Kubernetes 性能要求更高 离线场景,Pod 生命周期短、变更频率高 如何扩展 Kubernetes 集群 单个集群规模垂直扩展 多个集群横向扩展 降低运维管理成本 减少资源碎片 提高资源利用率 Kubernetes 的架构特点 K8s 各组件 apiserver 元信息存储 etcd etcd 存在的问题 自研元信息存储 调优 etcd 参数 按照对象拆分 etcd 设计新的元信息存储 … 如何解决存储瓶颈? KubeBrain 1. 大脑 2. 谐音科比 Kobe Bryant • 背景介绍 • 设计思路 • 性能优化 • 落地效果 • 未来演进 K8s 元信息存储的需求 (1) 读0 码力 | 60 页 | 8.02 MB | 1 年前3
Kubernetes日志平台建设最佳实践-元乙0 码力 | 30 页 | 53.00 MB | 1 年前3
数据迁移数据迁移 数据迁移 存量 存量 MySQL 迁移到 迁移到 TiDB 服务 服务 UDTS 产品⽀持 MySQL(5.5/5.6/5.7/8.0) 到 TiDB 的全量数据迁移, 及增量数据同步。 可协助⽤⼾在不停机的情况下轻松将业务从MySQL 切换⾄ TiDB。 ⾃建 ⾃建 TiDB 迁移到 迁移到 TiDB 服务 服务 UDTS 产品⽀持 TiDB 全量数据迁移⾄ TiDB服务。 ⽤⼾在源TiDB开启Pump ⽤⼾在源TiDB开启Pump, Drainer 可进⾏数据增量同步。 UDTS与源端Pump, Drainer⼀起可协助⽤⼾在不停机的情况下轻松将业 务从⾃建TiDB 切换⾄ TiDB 服务。 为 为 TiDB 服务建⽴ 服务建⽴ MySQL 从库 从库 UDTS 产品⽀持 TiDB 全量数据迁移⾄ MySQL 数据库。 ⽤⼾在TiDB服务上开启 Binlog 可将数据增量同步⾄下游MySQL。 UDTS 与 TiDB 服务建⽴ TiDB 从库 从库 UDTS 产品⽀持 TiDB 全量数据迁移⾄ TiDB 数据库。 ⽤⼾在源TiDB服务上开启 Binlog 可将数据增量同步⾄下游TiDB。 UDTS 与 TiDB Binlog服务⼀起可协助⽤⼾轻松建⽴TiDB从 数据迁移 Copyright © 2012-2021 UCloud 优刻得 1/2 库。 数据迁移 Copyright © 2012-2021 UCloud0 码力 | 2 页 | 42.01 KB | 6 月前3
数仓ClickHouse多维分析应用实践-朱元演讲人:朱元 日期: 2019-10-20 所遇问题 目录 CONTENTS 现状背景 应用实践 01 数据链路长 现状 即席查询性能差 数据压缩率低 需求响应慢 02 数据架构 数据同步ck 01 1,基于公司对数据要求为T+1 2. 基于现有开发人员水平及成本 因此采用可视化同步工具kettle. 先将oracle数据平台维度信息以及相关主题清单数据同步至clichouse数据 ichouse数据 仓库 Oracle数据平台 • 通过kettle每天 定时导出文件至 本地 Etl服务器 • 通过clickhouse- client将文本导 入ck数据库 clickhouse数据库 数 仓 建 设 01 ck数仓数据模型采用星型模型搭建 02 数 仓 建 设 – 维度表 一般维度表数据量不大. 目前采用的是引擎Log+字典表(dictionary) y) 数 仓 建 设 – 主题事实清单表 主题事实清单表采用引擎MergeTree. 同步策略: 每日从 oracle数据平台增量同步到ck数仓. 数 仓 建 设 – 对外数据 目前对外开放是主题事实清单表+维度表 封装成一个视图,类 似如下 数 据 展 示 + 多 维 分析 采用开源报表系统davinci 地址: https://github.com/edp963/davinci 030 码力 | 14 页 | 3.03 MB | 1 年前3
SQLite 数据转 MysqlSQLite 数据转 Mysql InsMsgServer 3.7.6 当前 InsMsgServer 环境 以下过程在 win7 sp1 x64 系统下完成,如果您的系统不能运行以下相关程序,请将服务器的 db/ 目录下的 IMBase.dat 文件复制到 win7 sp1 x64 系统下完成 利用 InsMsgServer 生成 Mysql 数据库 确保 确保 mysql 数据库中没有 IM 相关库 调整使用 Mysql 作为数据库,并点击启动 确认启动后数据库正确建立 退出 InsMsgServer,确保导入过程中不影响 InsMsgServer 运行 下载 SQLite Data Wizard 地址: http://www.sqlite.org/cvstrac/wiki?p=ConverterTools0 码力 | 17 页 | 1.40 MB | 1 年前3
Flink如何实时分析Iceberg数据湖的CDC数据Flink如何实时分析Iceberg数据湖的CDC数据 阿里巴巴 李/松/胡争 23选择 Flink Ic+b+1g #2 常DCCDC 分析方案 #1 如3实时写 4F取 ## 未来规划 #4 #见的CDC分析方案 #1 离线 HBase 集u分析 CDC 数a 、CDC记录实时写入HBase。高吞P + 低延迟。 2、小vSg询延迟低。 3、集u可拓展 ci评C 4、数a格式q定HF23e,不cF拓展到 +arquet、Avro、Orcn。 t点 A3a/21 Kudu 维护 CDC 数据p 、支持L时更新数据,时效性佳。 2、CK加速,适合OLAP分析。 方案评估 优点 、cedKudup群,a较小众。维护 O本q。 2、H HDFS / S3 / OSS 等D裂。数据c e,且KAO本不如S3 / OSS。 3、Kudud批量P描不如3ar4u1t。 4、不支持增量SF。 4、不支持增量SF。 h点 直接D入CDC到Hi2+分析 、流程能E作 2、Hi2+存量数据不受增量数据H响。 方案评估 优点 、数据不是CR写入; 2、每次数据D致都要 MERGE 存量数据 。T+ 方GT新3R效性差。 3、不M持CR1ps+rt。 缺点 SCaDk + )=AFa IL()(数据 MER,E .NTO GE=DE US.N, chan>=E ON GE=DE.GE=D0 码力 | 36 页 | 781.69 KB | 1 年前3
共 1000 条
- 1
- 2
- 3
- 4
- 5
- 6
- 100













