积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部后端开发(178)云计算&大数据(116)Python(97)VirtualBox(82)Julia(70)数据库(65)Celery(37)Django(28)PostgreSQL(26)Pandas(23)

语言

全部英语(379)

格式

全部PDF文档 PDF(331)其他文档 其他(48)
 
本次搜索耗时 0.059 秒,为您找到相关结果约 379 个.
  • 全部
  • 后端开发
  • 云计算&大数据
  • Python
  • VirtualBox
  • Julia
  • 数据库
  • Celery
  • Django
  • PostgreSQL
  • Pandas
  • 全部
  • 英语
  • 全部
  • PDF文档 PDF
  • 其他文档 其他
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 Segmentation Using GIMP

    Segmentation Using GIMP Dr. Tiberiu Stan – tiberiu.stan@northwestern.edu Northwestern University MatSci 395 – ML Lecture 2 – March 3, 2021 In-Class Activity: Segmentation Using GIMP Introduction • Al-Zn solidification using GIMP • In supervised machine learning, image- segmentation pairs are used for training Segmentation steps • Use the 852x852 pixel XCT image named “c54_ObjT1_z164.png” that lecture • Download and install GIMP: www.gimp.org • Open GIMP 2 XCT Image Segmentation In-Class Activity: Segmentation Using GIMP Open the required toolboxes • Windows tab –> New Toolboxes • Windows
    0 码力 | 8 页 | 490.52 KB | 1 年前
    3
  • pdf文档 PyTorch Release Notes

    R-CNN model: Mask R-CNN is a convolution-based neural network that is used for object instance segmentation. PyTorch Release 23.07 PyTorch RN-08516-001_v23.07 | 11 The paper describing the model R-CNN model: Mask R-CNN is a convolution-based neural network that is used for object instance segmentation. The paper describing the model can be found here. NVIDIA’s Mask R-CNN model is an optimized R-CNN model: Mask R-CNN is a convolution-based neural network that is used for object instance segmentation. The paper describing the model can be found here. NVIDIA’s Mask R-CNN model is an optimized
    0 码力 | 365 页 | 2.94 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 4 - Efficient Architectures

    project for you in the next section. We take up a novel task to train a model that predicts a segmentation mask over an object in the input sample. This model will be used within a mobile application. key concerns. Given an image of a pet, our model will predict a segmentation mask over the pet. An example input image and segmentation mask is shown in figure 4-22. We are going to use the Oxford-IIIT Oxford-IIIT Pet dataset30 for training purposes. It contains images and segmentation masks for 37 pet categories. We will train two models using regular convolutions and depthwise separable convolutions respectively
    0 码力 | 53 页 | 3.92 MB | 1 年前
    3
  • pdf文档 Dapr july 2020 security audit report

    conjunction to the recommendations filled in DAP-01-002, the overall security boundaries and segmentation should be adopted cluster-wide in order to prevent a local attacker with an initial foothold from Kubernetes cluster. This will offer a more granular configuration in regards to isolation and segmentation throughout the cluster. One open source project that is widely adopted for securing Kubernetes separation and segmentation. It is recommended to add configuration guidelines in terms of suggestions for Role-Based- Access-Controls (RBAC), as well as to reevaluate segmentation and separation policies
    0 码力 | 19 页 | 267.84 KB | 1 年前
    3
  • pdf文档 ClickHouse in Production

    Server Dynamic Linking Segmentation Fault 65 / 97 ODBC Engine: Dangerous way Driver Manager (shared library) ODBC Driver Database ClickHouse Server Dynamic Linking Segmentation Fault 66 / 97 ODBC way Driver Manager (shared library) ODBC Driver Database ClickHouse Server Dynamic Linking Segmentation Fault 67 / 97 ODBC Engine: Safety way Driver Manager (shared library) ODBC Driver Database
    0 码力 | 100 页 | 6.86 MB | 1 年前
    3
  • epub文档 PyArmor Documentation v5.6.5

    issue: verify license failed in some cases Refine core library to improve security 5.6.4 Fix segmentation fault issue for Python 3.8 5.6.3 Add option -x in command licenses to save extra data in the default build path for command pack, and do not remove it after command finished. 5.2.9 Fix segmentation fault issue for python3.5 and before: run too big obfuscated code object (>65536 bytes) will crash use –capsule instead Fix sys.settrace and sys.setprofile issues for auto-wrap mode 3.9.9 Fix segmentation fault issues for asyncio, typing modules 3.9.8 Add documentation for examples (examples/README
    0 码力 | 103 页 | 86.97 KB | 1 年前
    3
  • pdf文档 HUAWEI CLOUD Microservice Tool Improves Development Efficiency

    Sharding ... Syntax analysis Syntax analysis Syntax analysis Table correlation analysis Graph segmentation + heuristic rule Step 1: Extract all SQL statements in the system. Step 2: Create syntax trees and generate a weighted graph. Step 4: Shard data tables to databases by means of the graph segmentation algorithm and heuristic rule. Principle: loosely coupled and highly cohesive Coupling: sum of
    0 码力 | 14 页 | 795.42 KB | 1 年前
    3
  • pdf文档 PyArmor Documentation v6.4.4

    Fix issue (#357): Python3.9 doesn’t work, the obfuscated scripts raise unknow opcode 53/88 and segmentation fault 16.2 6.4.3 • Fix issue(#337): project can’t be configured with outer license • Fix issue(#342): verify license failed in some cases • Refine core library to improve security 16.61 5.6.4 • Fix segmentation fault issue for Python 3.8 16.62 5.6.3 • Add option -x in command licenses to save extra data command finished. 16.89. 5.3.5 135 PyArmor Documentation, Release 6.4.0 16.95 5.2.9 • Fix segmentation fault issue for python3.5 and before: run too big obfuscated code object (>65536 bytes) will crash
    0 码力 | 167 页 | 510.99 KB | 1 年前
    3
  • pdf文档 DeepSeek-V2: A Strong, Economical, and Efficient Mixture-of-Experts Language Model

    (FFNs), we follow the DeepSeekMoE architecture (Dai et al., 2024), which adopts fine-grained expert segmentation and shared expert isolation for higher potential in expert specialization. The DeepSeekMoE architecture proportional to the number of devices covered by its target experts. Due to the fine-grained expert segmentation in DeepSeekMoE, the number of activated experts can be large, so the MoE-related communication will be activated for each token. In addition, the low-rank compression and fine-grained expert segmentation will impact the output scale of a layer. Therefore, in practice, we employ additional RMS Norm
    0 码力 | 52 页 | 1.23 MB | 1 年前
    3
  • pdf文档 Oracle VM VirtualBox 4.3.18 User Manual

    family of adapters. Both virtio and Intel PRO/1000 adapters enjoy the benefit of segmentation and checksum offloading. Segmentation offloading is essential for high performance as it allows for less context cross VM/host boundary. Note: Neither virtio nor Intel PRO/1000 drivers for Windows XP support segmentation offloading. Therefore Windows XP guests never reach the same transmission rates as other guest otherwise use one of Intel PRO/1000 adapters; 2. Use bridged attachment instead of NAT; 3. Make sure segmentation offloading is enabled in the guest OS. Usually it will be enabled by default. You can check and
    0 码力 | 369 页 | 6.00 MB | 1 年前
    3
共 379 条
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 38
前往
页
相关搜索词
SegmentationUsingGIMPPyTorchReleaseNotesEfficientDeepLearningBookEDLChapterArchitecturesDaprjuly2020securityauditreportClickHouseinProductionPyArmorDocumentationv56.5HUAWEICLOUDMicroserviceToolImprovesDevelopmentEfficiencyv64.4DeepSeekV2StrongEconomicalandMixtureofExpertsLanguageModelOracleVMVirtualBox4.318UserManual
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩