积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部后端开发(36)C++(19)Rust(15)系统运维(2)云计算&大数据(2)Kubernetes(2)DevOps(2)数据库(1)Java(1)Go(1)

语言

全部中文(简体)(37)英语(2)中文(简体)(2)

格式

全部PPT文档 PPT(41)
 
本次搜索耗时 0.016 秒,为您找到相关结果约 41 个.
  • 全部
  • 后端开发
  • C++
  • Rust
  • 系统运维
  • 云计算&大数据
  • Kubernetes
  • DevOps
  • 数据库
  • Java
  • Go
  • 全部
  • 中文(简体)
  • 英语
  • 中文(简体)
  • 全部
  • PPT文档 PPT
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • ppt文档 RustBelt - Rust 的形式化语义模型

    第三届中国 Rust 开发者大会 王俊吉 RustBelt - Rust 的形式化语义模型 Outline Background • RustBelt Project • Rust Types Overview Rust Semantics • Type System • The own Predict • Exclusive Ownership & Mutable Borrow
    0 码力 | 21 页 | 2.63 MB | 1 年前
    3
  • ppt文档 C++高性能并行编程与优化 - 课件 - 04 从汇编角度看编译器优化

    编译器如何自动优化:从汇编角度看 C++ 5.C++11 起的多线程编程:从 mutex 到无锁并行 6.并行编程常用框架: OpenMP 与 Intel TBB 7.被忽视的访存优化:内存带宽与 cpu 缓存机制 8.GPU 专题: wrap 调度,共享内存, barrier 9.并行算法实战: reduce , scan ,矩阵乘法等 10.存储大规模三维数据的关键:稀疏数据结构 11.物理仿真实战:邻居搜索表实现 物理仿真实战:邻居搜索表实现 pbf 流体求解 12.C++ 在 ZENO 中的工程实践:从 primitive 说起 13.结业典礼:总结所学知识与优秀作业点评 I 硬件要求: 64 位( 32 位时代过去了) 至少 2 核 4 线程(并行课…) 英伟达家显卡( GPU 专题) 软件要求: Visual Studio 2019 ( Windows 用户) GCC 9 及以上( Linux 用户) CMake 章:汇编语言 x64 架构下的寄存器模型 通用寄存器: 32 位时代 • 32 位 x86 架构中的通用寄存器有: • eax, ecx, edx, ebx, esi, edi, esp, ebp • 其中 esp 是堆栈指针寄存器,和函数的调用与返回相关。 • 其中 eax 是用于保存返回值的寄存器。 通用寄存器: 64 位时代 • 64 位 x86 架构中的通用寄存器有: • rax
    0 码力 | 108 页 | 9.47 MB | 1 年前
    3
  • ppt文档 C++高性能并行编程与优化 - 课件 - 08 CUDA 开启的 GPU 编程

    CUDA 开启的 GPU 编程 by 彭于斌( @archibate ) 往期录播: https://www.bilibili.com/video/BV1fa411r7zp 课程 PPT 和代码: https://github.com/parallel101/course 前置条件 • 学过 C/C++ 语言编程。 • 理解 malloc/free 之类的概念。 • 熟悉 STL 中的容器、函数模板等。 及以上。 我负责监督你学习 第 0 章: Hello, world! CMake 中启用 CUDA 支持 • 最新版的 CMake ( 3.18 以上),只需在 LANGUAGES 后面加上 CUDA 即可启用 。 • 然后在 add_executable 里直接加你 的 .cu 文件,和 .cpp 一样。 https://www.nvidia.cn/docs/IO/51635/NVI .1_chs.pdf CUDA 编译器兼容 C++17 • CUDA 的语法,基本完全兼容 C++ 。包括 C+ +17 新特性,都可以用。甚至可以把任何一个 C++ 项目的文件后缀名全部改成 .cu ,都能编 译出来。 • 这是 CUDA 的一大好处, CUDA 和 C++ 的关 系就像 C++ 和 C 的关系一样,大部分都兼容 ,因此能很方便地重用 C++ 现有的任何代码库
    0 码力 | 142 页 | 13.52 MB | 1 年前
    3
  • ppt文档 C++高性能并行编程与优化 - 课件 - 12 从计算机组成原理看 C 语言指针

    *)malloc(size); • 如果你没看出来(哪怕是其中一个),那就要好好上小彭老师的课哦! 字节( byte ) 和位( bit )有什么区别 • 众所周知,计算机是二进制的,存储的实际上是一个个 0 和 1 。 • 每个存储 0 或 1 的空间称为一个位( bit ),一位可以存储 0 或 1 两个可能的值。 • 现在的计算机都会把 8 个位打包成一个字节( byte ),也就是说: 1 字节 = 11111101 表示 253 11111110 表示 254 11111111 表示 255 • 字节实际上就是 C 语言中的 unsigned char 类型。 表示更大范围的整数:字( word ) • 但是单单一个字节表示的范围还是太有限了,只能表示 0 到 255 的值。 • 如何扩大表示范围?简单,用两个字节合在一起即可,例如: • 00000000-00000000 表示 0 00000000-00000001 这就是两个字节合成了一个字( word ),实际上就是 C 语言里的 unsigned short 类型 。 不同位数的计算机,字( word )的大小也不一样 • 刚刚说把 2 个字节( byte )拼成一个字( word ),实际上是 16 位计算机的做法。 • 16 位计算机得名就是因为他的字由 16 个位组成,早期的 8086 系列 CPU 就是 16 位 的。 • 在 32 位计算机上会把 4 个字节拼成一个字,字由
    0 码力 | 128 页 | 2.95 MB | 1 年前
    3
  • ppt文档 C++高性能并行编程与优化 - 课件 - 17 由浅入深学习 map 容器

    元素居然是错误的! 能不能在遍历的同时删除元素?安全吗? emplace , emplace_hint , try_emplace 的区别? 课程安排 1. vector 容器初体验 & 迭代器入门 (BV1qF411T7sd) 2. 你所不知道的 set 容器 & 迭代器分类 (BV1m34y157wb) 3. string , string_view , const char * 的爱恨纠葛 (BV1ja411M7Di) (BV1ja411M7Di) 4. 万能的 map 容器全家桶及其妙用举例 ( 本期 ) 5. 函子 functor 与 lambda 表达式知多少 6. 通过实战案例来学习 STL 算法库 7. C++ 标准输入输出流 & 字符串格式化 8. traits 技术,用户自定义迭代器与算法 9. allocator ,内存管理与对象生命周期 10. C++ 异常处理机制的前世今生 我们都要认真鞋习哦 我们都要认真鞋习哦 查找元素的两个接口 • map 提供了两个查找元素的接口,一曰 [] ,二曰 at 。 • 那么他们两个又有什么区别呢?很多新手都分不清他俩,可能只认识 [] 。 读取 map 元素 • map m; • 读取 map 中指定键值的元素有两种方法。 • val = m[“key”]; // 读取键值为 “ key” 的元素,如果不存在,那就创建
    0 码力 | 90 页 | 8.76 MB | 1 年前
    3
  • ppt文档 Zadig 面向开发者的云原生 DevOps 平台

    面向开发者的云原生 DevOps 平台 角色: 产品 / 架构 开发 测试 运维 运维 / 开发 技术支持 事件 需求设计 架构设计 拆任务、写代码 代码集成 xN 单元测试验证 xN 代码扫描 xN 自测、联调 xN 集成验证 xN 写测试用例 系统验证 xN 自动化测试 xN 性能测试 xN 安全测试 xN 数据变更 xN xN 部署生产环境 xN 部署 / 灰度上线 xN 监控 / 告警 xN 版本归档 xN 交付追踪 xN 数据度量 xN 服务、工单管理 事件、缺陷管理 想 法 用 户 运行阶段 需求阶段 研发阶段 现代软件交付挑战:开发 5 分钟,上线 2 小时 服务一:设计 | 代码编写 | 构建 | 测试 | 测试 | 部署 | 发布 服务三:设计 | 代码编写 | 构建 | 测试 | 部署 | 发布 以前:面向代码片段的串行交付 现在:面向多个服务编排的产品级自动化并行交付 服务一: 服务定义 | 构建 | 部署 | 测试 | 发布 服务二: 服务定义 | 构建 | 部署 |
    0 码力 | 59 页 | 81.43 MB | 1 年前
    3
  • ppt文档 KubeCon2020/大型Kubernetes集群的资源编排优化

    0 码力 | 27 页 | 3.91 MB | 1 年前
    3
  • ppt文档 C++高性能并行编程与优化 - 课件 - 性能优化之无分支编程 Branchless Programming

    乱序 有序 • 传统的分支方法实现的 uppercase ,对于 排序过的数据明显比乱序时高效。 • 无分支的方法对于乱序和有序的数据一样 高效,性能吊打了传统的分支方法。 • 对于传统分支的做法,为什么排序了的更 高效?既然无分支更高效,我要怎样优化 才能让我的程序变成无分支的呢?那就来 看本期性能优化专题课吧! 分支预测成败对性能的影响 排序为什么对有分支的版本影响那么大 为什么需要流水线 为什么需要流水线 • 为了高效, CPU 的内部其实是一个流水 线 (pipeline) 。流水线的目的是能把原本 串行的一系列指令并行化。为了理解为什 么需要流水线,我们先反过来,假设没有 流水线,会有什么坏处。 • 例如,右边你今天早上的任务清单。 • 请问你这些任务总共需要多少时间? 任务 时间 占用资源 洗脸 5 分钟 眼睛,嘴巴,手 烧开水 10 分钟 煤气灶 刷牙 5 20 分钟 屁股 为什么需要流水线 • 一些懒得动脑子的同学可能会脱口而出, 不就是 5 + 10 + 5 + 15 + 30 + 20 = 85 分 钟嘛!可以,不过这是在你每次只做一件 事的情况下,例如你烧开水时就站在旁边 干瞪眼,什么也不做,其实完全可以在烧 开水的同时洗脸刷牙呀!原始的 CPU 也 是这样, ALU 在运算的时候指令解码单元 就在旁边干瞪眼,要等 ALU 跑完写回寄
    0 码力 | 47 页 | 8.45 MB | 1 年前
    3
  • ppt文档 Borsh 安全高效的二进制序列化

    安全高效的二进制序列化 Daniel Wang @ NEAR Borsh • 运行、编码效率 • 确定性 • 跨平台兼容性 二进制序列化的问题 Binary Object Representation Serializer for Hashing • 字节级别确定性 • 执行速度快 Borsh • 轻量级 • 每一个对象与其二进制表示之间都存在一个双射映射 • 不同的对象的二进制表示一定不同 benchmark 执行速度 benchmark • 编译后的体积更小 • borsh 序列化后的二进制更精简 轻量级 序列化结果体积对比 Borsh 基本用法 Case Study NEAR 智能合约 Case Study Solana 智能合约 Case Study • non self-describing • 保证序列化后的二进制唯一性和确定性 • 主要序列化规则 Borsh Borsh 规范 • 整数采用低字节序( little endian) 存储 • 对于动态长度的集合,先用一个 u32 存储集合 size • 对于原本无序的集合(如 hashmap ),存储时使用 key 的字典序排序 Borsh 规范 let a: [u32; 5] = [1, 2, 3, 4, 5]; let a = vec![1, 2, 3, 4, 5]; let solar_distance
    0 码力 | 21 页 | 3.35 MB | 1 年前
    3
  • ppt文档 Rust 异步并发框架在移动端的应用 - 陈明煜

    第三届中国 Rust 开发者大会 Rust 异步并发框架在移动端的应用 陈明煜 chenmingyu4@huawei.com 华为 公共开发部 嵌入式软件能力中心 本科就读加州大学圣地亚哥分校,毕业时长两年半, Rustacean 在 华为 目前正在使用 Rust 开发并行调度框架等模块。 Rust 异步并发框架在移动端的应用 陈明煜 chenmingyu4@huawei.com 华为 Contents #2 社区并发框架介绍以及与移动端的不适配性 Introduction to third party Runtime crates and their incompatibility with mobile environment Rust 异步机制 Asynchronous Rust 异步并发框架是许多大型应用、系统具备的底层能力。 区别于多线程编程模型,它带来以下优势: 区别于多线程编程模型,它带来以下优势:  任务调度颗粒度更小,充分利用线程资源  更可控的线程数  单个任务资源占用:几十 KB -> 几百 Byte  任务切换时间 : 10 微秒 -> 100 纳秒 Rust 语言并没有提供异步并发框架, 只提供异步所需的基本特性:  Future  async / await  Waker asyn c Future Waker poll Syntax sugar
    0 码力 | 25 页 | 1.64 MB | 1 年前
    3
共 41 条
  • 1
  • 2
  • 3
  • 4
  • 5
前往
页
相关搜索词
王俊吉RustConf2023RustBeltC++高性性能高性能并行编程优化课件04081217Zadig面向开发开发者原生DevOps平台KubeCon2020大型Kubernetes集群资源编排RustBorsh陈明煜2023RustChinaConf
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩