C++高性能并行编程与优化 - 课件 - 03 现代 C++ 进阶:模板元编程C++ 进阶:模板元编程 by 彭于斌( @archibate ) 往期录播: https://www.bilibili.com/video/BV1fa411r7zp 课程 PPT 和代码: https://github.com/parallel101/course 高性能并行编程与优化 - 课程大纲 • 分为前半段和后半段,前半段主要介绍现代 C++ ,后半段主要介绍并行编程与优化。 1 cmake 与 git 入门 2.现代 C++ 入门:常用 STL 容器, RAII 内存管理 3.现代 C++ 进阶:模板元编程与函数式编程 4.编译器如何自动优化:从汇编角度看 C++ 5.C++11 起的多线程编程:从 mutex 到无锁并行 6.并行编程常用框架: OpenMP 与 Intel TBB 7.被忽视的访存优化:内存带宽与 cpu 缓存机制 8.GPU 专题: wrap 以上( GPU 专题) 为什么需要模板函数( template ) • 避免重复写代码。 • 比如,利用重载实现“将一个数乘以 2” 这个 功能,需要: 为什么面向对象在 HPC 不如函数式和元编程香了? 这个例子要是按传统的面向对象思想,可能是这样: 令 Int, Float, Double 继承 Numeric 接口类并实现 ,其中 multiply(int) 作为虚函数。然后定义: Numeric0 码力 | 82 页 | 12.15 MB | 1 年前3
C++高性能并行编程与优化 - 课件 - 08 CUDA 开启的 GPU 编程CUDA 开启的 GPU 编程 by 彭于斌( @archibate ) 往期录播: https://www.bilibili.com/video/BV1fa411r7zp 课程 PPT 和代码: https://github.com/parallel101/course 前置条件 • 学过 C/C++ 语言编程。 • 理解 malloc/free 之类的概念。 • 熟悉 STL 中的容器、函数模板等。 支持 • 最新版的 CMake ( 3.18 以上),只需在 LANGUAGES 后面加上 CUDA 即可启用 。 • 然后在 add_executable 里直接加你 的 .cu 文件,和 .cpp 一样。 https://www.nvidia.cn/docs/IO/51635/NVIDIA_CUDA_Programming_Guide_1.1_chs.pdf CUDA 编译器兼容 C++ 项目的文件后缀名全部改成 .cu ,都能编 译出来。 • 这是 CUDA 的一大好处, CUDA 和 C++ 的关 系就像 C++ 和 C 的关系一样,大部分都兼容 ,因此能很方便地重用 C++ 现有的任何代码库 ,引用 C++ 头文件等。 • host 代码和 device 代码写在同一个文件内,这 是 OpenCL 做不到的。 编写一段在 GPU 上运行的代码 •0 码力 | 142 页 | 13.52 MB | 1 年前3
C++高性能并行编程与优化 - 课件 - 06 TBB 开启的并行编程之旅TBB 开启的并行编程之旅 by 彭于斌( @archibate ) 往期录播: https://www.bilibili.com/video/BV1fa411r7zp 课程 PPT 和代码: https://github.com/parallel101/course 高性能并行编程与优化 - 课程大纲 • 分为前半段和后半段,前半段主要介绍现代 C++ ,后半段主要介绍并行编程与优化。 1 cmake 与 git 入门 2.现代 C++ 入门:常用 STL 容器, RAII 内存管理 3.现代 C++ 进阶:模板元编程与函数式编程 4.编译器如何自动优化:从汇编角度看 C++ 5.C++11 起的多线程编程:从 mutex 到无锁并行 6.并行编程常用框架: OpenMP 与 Intel TBB 7.被忽视的访存优化:内存带宽与 cpu 缓存机制 8.GPU 专题: wrap 为什么无法做到呢?首先,为了保证缓存一致性以及其他握手协议需要运行时间开销。在 今天,双核或者四核机器在多线程应用方面,其性能不见得的是单核机器的两倍或者四倍。 这一问题一直伴随 CPU 发展至今。 并发和并行的区别 • 运用多线程的方式和动机,一般分为两种。 • 并发:单核处理器,操作系统通过时间片调 度算法,轮换着执行着不同的线程,看起来 就好像是同时运行一样,其实每一时刻只有 一个线程在运行。目的:异步地处理多个不0 码力 | 116 页 | 15.85 MB | 1 年前3
C++高性能并行编程与优化 - 课件 - 性能优化之无分支编程 Branchless Programming性能优化 之 无分支编程 Branchless Programming by 彭于斌( @archibate ) 两种代码写法:分支 vs 三目运算符 两种使用方式:排序 vs 不排序 测试结果(均为 gcc -O3 ) 测试结果可视化 图表比较:分支 vs 无分支 分支 无分支 0 0.01 0.02 0.03 耗时(越低越好) 乱序 有序 • 传统的分支方法实现的 传统的分支方法实现的 uppercase ,对于 排序过的数据明显比乱序时高效。 • 无分支的方法对于乱序和有序的数据一样 高效,性能吊打了传统的分支方法。 • 对于传统分支的做法,为什么排序了的更 高效?既然无分支更高效,我要怎样优化 才能让我的程序变成无分支的呢?那就来 看本期性能优化专题课吧! 分支预测成败对性能的影响 排序为什么对有分支的版本影响那么大 为什么需要流水线 • 为了高效, CPU 为什么需要流水线 • 更高效的办法是,观察每个任务都占用哪些 资源,所占用资源不冲突的可以同时进行, 节省时间。 • 例如洗脸需要眼睛嘴巴手,刷牙需要嘴巴手 ,那么洗脸和刷牙不能同时进行。但是烧开 水只需要占用煤气灶,和洗脸刷牙不冲突, 所以可以一边烧开水一边洗脸刷牙。 • 所以让小彭老师来优化的话,可以只需要 5 + 5 + 10 + 20 = 40 分钟,比你快一倍多。 任务 时间0 码力 | 47 页 | 8.45 MB | 1 年前3
C++高性能并行编程与优化 - 课件 - 05 C++11 开始的多线程编程课程 PPT 和代码: https://github.com/parallel101/course 高性能并行编程与优化 - 课程大纲 • 分为前半段和后半段,前半段主要介绍现代 C++ ,后半段主要介绍并行编程与优化。 1.课程安排与开发环境搭建: cmake 与 git 入门 2.现代 C++ 入门:常用 STL 容器, RAII 内存管理 3.现代 C++ 进阶:模板元编程与函数式编程 进阶:模板元编程与函数式编程 4.编译器如何自动优化:从汇编角度看 C++ 5.C++11 起的多线程编程:从 mutex 到无锁并行 6.并行编程常用框架: OpenMP 与 Intel TBB 7.被忽视的访存优化:内存带宽与 cpu 缓存机制 8.GPU 专题: wrap 调度,共享内存, barrier 9.并行算法实战: reduce , scan ,矩阵乘法等 10.存储大规模三维数据的关键:稀疏数据结构 当前时间的三秒后 • usleep(3000000); // 让程序休眠 3000000 微秒,也就是 3 秒 • C 语言原始的 API ,没有类型区分,导致很容易弄错单位,混淆时间点和时间段。 • 比如 t0 * 3 ,乘法对时间点而言根本是个无意义的计算,然而 C 语言把他们看做一样的 long 类型,从而容易让程序员犯错。 C++11 引入的时间标准库: std::chrono0 码力 | 79 页 | 14.11 MB | 1 年前3
C++高性能并行编程与优化 - 课件 - 01 学 C++ 从 CMake 学起高性能并行编程与优化 - 课程大纲 • 分为前半段和后半段,前半段主要介绍现代 C++ ,后半段主要介绍并行编程与优化。 1.课程安排与开发环境搭建: cmake 与 git 入门 2.现代 C++ 入门:常用 STL 容器, RAII 内存管理 3.现代 C++ 进阶:模板元编程与函数式编程 4.编译器如何自动优化:从汇编角度看 C++ 5.C++11 起的多线程编程:从 mutex mutex 到无锁并行 6.并行编程常用框架: OpenMP 与 Intel TBB 7.被忽视的访存优化:内存带宽与 cpu 缓存机制 8.GPU 专题: wrap 调度,共享内存, barrier 9.并行算法实战: reduce , scan ,矩阵乘法等 10.存储大规模三维数据的关键:稀疏数据结构 11.物理仿真实战:邻居搜索表实现 pbf 流体求解 12.C++ 在 ZENO 中的工程实践:从 GNU gcc g++ gfortran LLVM clang clang++ flang 多文件编译与链接 • 单文件编译虽然方便,但也有如下缺点: 1. 所有的代码都堆在一起,不利于模块化和理解。 2. 工程变大时,编译时间变得很长,改动一个地方就得全部重新编译。 • 因此,我们提出多文件编译的概念,文件之间通过符号声明相互引用。 • > g++ -c hello.cpp -o hello0 码力 | 32 页 | 11.40 MB | 1 年前3
C++高性能并行编程与优化 - 课件 - 17 由浅入深学习 map 容器key” 的元素,如果不存在,那就创建 “ key” 元素 • val = m.at(“key”); // 读取键值为 “ key” 的元素,如果不存在,抛出异常 • 所以 [] 和 at() 唯一的区别,在于键值不存在这一特殊情况的处理方式。 • [] 默默创建。 • at() 抛出异常。 读取 map 元素 • mapm; • val = == m.end()) { • throw std::out_of_range(“ 找不到键值” ); • } • val = it->second; 从 map 中读取元素: C++ 和 Python 对比 • Python 中 val = m[“key”] 读取元素,找不到键值会出错,调试时更早发现错误。 • C++ 中 val = m[“key”] 读取元素,找不到键值不会出错而是默默创建,还初始化为 初始化为 0 。 • C++ 中 val = m.at(“key”) 读取元素,找不到键值会出错,调试时更早发现错误。 • 所以 C++ 中读取元素,应该用 at() 才对, at() 在读取时和多数语言的 [] 行为一致。 • 很多初学者都会错误使用 [] 读取元素,他以为找不到键值会报错,结果他不报错,默默创 建了个 0 返回给你,导致实际报错的地方滞后,没发现错误在 map 的读取这里,严重影 0 码力 | 90 页 | 8.76 MB | 1 年前3
C++高性能并行编程与优化 - 课件 - 11 现代 CMake 进阶指南com/video/BV1fa411r7zp 课程 PPT 和代码: https://github.com/parallel101/course 为什么要学习现代 CMake ? • 现代 CMake 指的是 CMake 3.x 。 • 古代 CMake 指的是 CMake 2.x 。 • 通过互联网和学校课程,许多人认识的 CMake 都是古代 CMake 。 • 现代 CMake 和古代 CMake 相比,使用 生成 Makefile • 执行本地的构建系统 make 真正开始构建( 4 进程并 行) • 让本地的构建系统执行安装步骤 • 回到源码目录 现代 CMake 提供了更方便的 -B 和 --build 指令,不同平台,统一命 令! • cmake -B build • cmake --build build -j4 • sudo cmake --build build --target build 统一了不同平台( Linux 上会调用 make , Windows 上调用 devenv.exe ) • 结论:从现在开始,如果在命令行操作 cmake ,请使用更方便的 -B 和 --build 命令。 // 在源码目录用 -B 直接创建 build 目录并生成 build/Makefile // 自动调用本地的构建系统在 build 里构建,即: make -C build0 码力 | 166 页 | 6.54 MB | 1 年前3
C++高性能并行编程与优化 - 课件 - 07 深入浅出访存优化深入浅出访存优化 by 彭于斌( @archibate ) 往期录播: https://www.bilibili.com/video/BV1fa411r7zp 课程 PPT 和代码: https://github.com/parallel101/course 为什么往 int 数组里赋值 1 比赋值 0 慢一倍? 第 1 章:内存带宽 cpu-bound 与 memory-bound 因为一次浮点加法的计算量和访存的超高延迟相比实在太少了。 • 计算太简单,数据量又大,并行只带来了多线程调度的额外开销 。 • 小彭老师经验公式: 1 次浮点读写 ≈ 8 次浮点加法 • 如果矢量化成功( SSE ): 1 次浮点读写 ≈ 32 次浮点加法 • 如果 CPU 有 4 核且矢量化成功: 1 次浮点读写 ≈ 128 次浮点加 法 常见操作所花费的时间 • 图中加法 (add) 和乘法 (mul) • 区别是浮点的乘法和加法基本是一样速度。 • L1/2/3 read 和 Main RAM read 的时间指的是 读一个缓存行( 64 字节)所花费的时间。 • 根据计算: 125/64*4≈8 • 即从主内存读取一次 float 花费 8 个 cycle , 符合小彭老师的经验公式。 • “right” 和“ wrong” 指的是分支预测是否成功。 多少计算量才算多? • 看右边的0 码力 | 147 页 | 18.88 MB | 1 年前3
C++高性能并行编程与优化 - 课件 - 02 现代 C++ 入门:RAII 内存管理PPT 和代码: https://github.com/parallel101/course 高性能并行编程与优化 - 课程大纲 • 分为前半段和后半段,前半段主要介绍现代 C++ ,后半段主要介绍并行编程与优化。 1.课程安排与开发环境搭建: cmake 与 git 入门 2.现代 C++ 入门:常用 STL 容器, RAII 内存管理 3.现代 C++ 进阶:模板元编程与函数式编程 进阶:模板元编程与函数式编程 4.编译器如何自动优化:从汇编角度看 C++ 5.C++11 起的多线程编程:从 mutex 到无锁并行 6.并行编程常用框架: OpenMP 与 Intel TBB 7.被忽视的访存优化:内存带宽与 cpu 缓存机制 8.GPU 专题: wrap 调度,共享内存, barrier 9.并行算法实战: reduce , scan ,矩阵乘法等 10.存储大规模三维数据的关键:稀疏数据结构 3.12 及以上(跨平台作业) Git 2.x (作业上传到 GitHub ) CUDA Toolkit 10.0 以上( GPU 专题) 从一个案例看 C++ 的历史 • 求一个列表中所有数的和: # 参考资料 - [ 热心观众整理的学习资料 ](https://github.com/jiayaozhang/OpenVDB_and_TBB) - [C++ 官方文档 ](https://en0 码力 | 96 页 | 16.28 MB | 1 年前3
共 34 条
- 1
- 2
- 3
- 4













