积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部后端开发(189)C++(106)Python(52)综合其他(23)Julia(18)Conda(17)人工智能(16)Django(13)云计算&大数据(12)VirtualBox(11)

语言

全部英语(202)中文(繁体)(11)中文(简体)(9)zh(3)日语(2)英语(2)西班牙语(1)fj(1)韩语(1)

格式

全部PDF文档 PDF(224)其他文档 其他(7)PPT文档 PPT(4)DOC文档 DOC(2)
 
本次搜索耗时 0.291 秒,为您找到相关结果约 237 个.
  • 全部
  • 后端开发
  • C++
  • Python
  • 综合其他
  • Julia
  • Conda
  • 人工智能
  • Django
  • 云计算&大数据
  • VirtualBox
  • 全部
  • 英语
  • 中文(繁体)
  • 中文(简体)
  • zh
  • 日语
  • 英语
  • 西班牙语
  • fj
  • 韩语
  • 全部
  • PDF文档 PDF
  • 其他文档 其他
  • PPT文档 PPT
  • DOC文档 DOC
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 Real-Time Unified Data Layers: A New Era for Scalable Analytics, Search, and AI

    Real-Time Unified Data Layers: A New Era for Scalable Analytics, Search, and AI v 1.1Table of Contents Introduction 1. The Interconnection of Analytics, Search, and AI 2. What is a Real-Time Unified interconnected in how they process, interpret, and extract value from data. Together, they enable efficient data processing, enhance decision-making, and improve user experiences: Analytics transforms raw architecture teams must rethink traditional data infrastructures. The future lies in Real-Time Unified Data Layers—platforms that seamlessly support analytics, search, and AI workloads at scale. These systems break
    0 码力 | 10 页 | 2.82 MB | 6 月前
    3
  • pdf文档 Designing Fast and Efficient List-like Data Structures

    0 码力 | 29 页 | 852.61 KB | 6 月前
    3
  • pdf文档 Leveraging the Power of C++ for Efficient Machine Learning on Embedded Devices

    Leveraging the power of C++ for efficient machine learning on embedded devices Adrian Stanciu adrian.stanciu.pub@gmail.com CppCon, 2023 1 / 50About me ◮ I am a software engineer from Romania ◮ I have data to make predictions 11 / 50Neural network (NN) 13 / 50Convolutional neural network (CNN) ◮ Efficient in image classification ◮ A convolutional layer can apply filters to detect: ◮ Edges ◮ Shapes ◮ 50Conclusions ◮ Code isn’t enough... data matters ◮ More diverse data leads to better models ◮ Building accurate models is an expert job ◮ Running on-device inference is straightforward ◮ Running on-device
    0 码力 | 51 页 | 1.78 MB | 6 月前
    3
  • pdf文档 Trends Artificial Intelligence

    digital datasets that have been in the making for over three decades; breakthrough large language models (LLMs) that – in effect – found freedom with the November 2022 launch of OpenAI’s ChatGPT with computers are ingesting massive datasets to get smarter and more competitive. Breakthroughs in large models, cost-per-token declines, open-source proliferation and chip performance improvements are making are racing to build and deploy the next layers of AI infrastructure: agentic interfaces, enterprise copilots, real-world autonomous systems, and sovereign models. Rapid advances in artificial intelligence
    0 码力 | 340 页 | 12.14 MB | 5 月前
    3
  • pdf文档 micrograd++: A 500 line C++ Machine Learning Library

    library aims to provide a simple yet powerful framework for building and training machine learning models. By leveraging the performance efficiency of C++, micro- grad++ offers a robust solution for integrating for defining layers and neurons, enabling users to construct complex network architec- tures. • Backpropagation: The implementation of backpropa- gation in micrograd++ allows for efficient training of of models through gradient descent. • Gradient Clipping: To prevent the issue of exploding gradients, micrograd++ incorporates gradient clipping, ensuring stable training processes. C. Unique Aspects and
    0 码力 | 3 页 | 1.73 MB | 6 月前
    3
  • pdf文档 The Servo Book - 0.0.1

    Windows (none) AI contributions Contributions must not include content generated by large language models or other probabilistic tools, including but not limited to Copilot or ChatGPT. This policy covers contributions, something that we cannot trust an AI tool to do. Copyright issues: Publicly available models are trained on copyrighted content, both accidentally and intentionally, and their output often includes Ethical issues: AI tools require an unreasonable amount of energy and water to build and operate, their models are built with heavily exploited workers in unacceptable working conditions, and they are being used
    0 码力 | 107 页 | 2.48 MB | 3 天前
    3
  • word文档 A Seat at the Table - IT Leadership in the Age of Agility

    conditions of tremendous uncertainty, your choices will often turn out to be wrong.Agile and plan-driven models have very different ways of dealing with uncertainty. Plan driven approaches, even Waterfall, have more quickly and with more good information available.  “Failing” in this sense is simply an efficient process we use to select among alternatives. Shadow IT Agile ways of working support a community done: The hierarchy must be flattened. Layers of management get in the way of goals. The employee wants the shortest possible path to shipping code without needing layers of approval. Management should be
    0 码力 | 7 页 | 387.48 KB | 6 月前
    3
  • pdf文档 Game Development for Human Beings

    -Setting the game size in pixels -Tiled basic usage -Tile layers and object layers -Tilemaps -Creating sprites from object layers -Moving a character in a top-down level Zenva Academy – Online reserved Page 25 The next step is to create the Layers. A level will have different layers that sit on top of each other. The naming of the layers is important here as we need to refer to that in the types of layers: -Tile layer: layer made of tiles/blocks. -Objects layer: layer where you create vector objects that can contain metadata. You can create layers using the “+” button under layers, to
    0 码力 | 472 页 | 8.46 MB | 11 月前
    3
  • pdf文档 TiDB v8.5 Documentation

    provides �→ more relevant search results. As one of the core functions of AI and �→ large language models (LLMs), vector search can be used in various �→ scenarios such as Retrieval-Augmented Generation which provides more relevant search results. As one of the core functions of AI and large language models (LLMs), vector search can be used in various scenarios such as Retrieval-Augmented Generation (RAG) IntegerField(default=0) class Meta: table_name = "players" For more information, refer to peewee documentation: Models and Fields. Insert data #### Insert a single record Player.create(name="test", coins=100, goods=100)
    0 码力 | 6730 页 | 111.36 MB | 10 月前
    3
  • pdf文档 TiDB v8.4 Documentation

    provides �→ more relevant search results. As one of the core functions of AI and �→ large language models (LLMs), vector search can be used in various �→ scenarios such as Retrieval-Augmented Generation which provides more relevant search results. As one of the core functions of AI and large language models (LLMs), vector search can be used in various scenarios such as Retrieval-Augmented Generation (RAG) IntegerField(default=0) class Meta: table_name = "players" For more information, refer to peewee documentation: Models and Fields. Insert data #### Insert a single record Player.create(name="test", coins=100, goods=100)
    0 码力 | 6705 页 | 110.86 MB | 10 月前
    3
共 237 条
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 24
前往
页
相关搜索词
RealTimeUnifiedDataLayersNewEraforScalableAnalyticsSearchandAIDesigningFastEfficientListlikeStructuresLeveragingthePowerofC++MachineLearningonEmbeddedDevicesTrendsArtificialIntelligencemicrograd++500lineLibraryTheServoBook0.0SeatatTableITLeadershipinAgeAgilityGameDevelopmentHumanBeingsTiDBv8Documentation
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩