清华大学 普通人如何抓住DeepSeek红利在AI时代,知识的获取成本趋近于零,拥有知识不再是核心竞争力。利用提示词创造知识,引领创新、明确 方向,成为社会与个人竞争力的关键。 p 选择中的再创造 面对AI提供的多种解法,人类需具备批判性思维与逻辑判断能力,通过选择最优答案,实现解决方案的创新 性再生。 p 智慧赋能的决策力 提出问题与甄别答案的能力,使人类在信息爆炸与AI辅助的时代,通过决策行为实现价值创造,成为社会发 展的持续动力。 自然语言理解与分析 文本分类 • 文本分类 • 主题标签生成(如新闻分 类) • 垃圾内容检测 Mermaid图表 · 流程图 · 时序图 · 类图 · 状态图 · 实体关系图 · 思维导图 React图表 · 折线图 · 柱状图 · 饼图 · 散点图 · 雷达图 · 组合图表 SVG矢量图 · 基础图形 · 图标 · 简单插图 · 流程图 · 组织架构图 p 提出具体问题 p 请求分步建议或优先级排序 p 提供更多背景信息(如需要) 情景还原:你是一个白领,面临以下事情:19:00女儿钢琴比赛 vs 跨国并购会议、季度裁员指标压力导致失眠、 健身教练多次提醒体脂率超标、父母体检报告出现异常指标 场景3:突发事件应急管理与跨界协调 情景还原:台风突袭导致孕期34周妻子被困郊区、数据中心备用电源仅能维持4小时、急需转移独居失智老 人、社区抢购导致物资短缺0 码力 | 65 页 | 4.47 MB | 8 月前3
DeepSeek从入门到精通(20250204)概率预测(快速反应模型,如ChatGPT 4o) 链式推理(慢速思考模型,如OpenAI o1) 性能表现 响应速度快,算力成本低 慢速思考,算力成本高 运算原理 基于概率预测,通过大量数据训练来快速预测可能 的答案 基于链式思维(Chain-of-Thought),逐步推理 问题的每个步骤来得到答案 决策能力 依赖预设算法和规则进行决策 能够自主分析情况,实时做出决策 创造力 限于模式识别和优化,缺乏真正的创新能力 更自然地与人互动,理解复杂情感和意图 问题解决能力 擅长解决结构化和定义明确的问题 能够处理多维度和非结构化问题,提供创造性的解 决方案 伦理问题 作为受控工具,几乎没有伦理问题 引发自主性和控制问题的伦理讨论 CoT链式思维的出现将大模型分为了两类:“概率预测(快速反应)”模型和“链式推理(慢速思考)”模型。 前者适合快速反馈,处理即时任务;后者通过推理解决复杂问题。了解它们的差异有助于根据任务需求选择合 适的模型,实现最佳效果。 创意引导能力 设计能激发AI创新思维的提示语 利用类比、反向思考等技巧拓展AI输出的可能性 巧妙结合不同领域概念,产生跨界创新 结果优化能力 分析AI输出,识别改进空间 通过迭代调整提示语,优化输出质量 设计评估标准,量化提示语效果 跨域整合能力 将专业领域知识转化为有效的提示语 利用提示语桥接不同学科和AI能力 创造跨领域的创新解决方案 系统思维 设计多步骤、多维度的提示语体系0 码力 | 104 页 | 5.37 MB | 8 月前3
清华大学 DeepSeek 从入门到精通概率预测(快速反应模型,如ChatGPT 4o) 链式推理(慢速思考模型,如OpenAI o1) 性能表现 响应速度快,算力成本低 慢速思考,算力成本高 运算原理 基于概率预测,通过大量数据训练来快速预测可能 的答案 基于链式思维(Chain-of-Thought),逐步推理 问题的每个步骤来得到答案 决策能力 依赖预设算法和规则进行决策 能够自主分析情况,实时做出决策 创造力 限于模式识别和优化,缺乏真正的创新能力 更自然地与人互动,理解复杂情感和意图 问题解决能力 擅长解决结构化和定义明确的问题 能够处理多维度和非结构化问题,提供创造性的解 决方案 伦理问题 作为受控工具,几乎没有伦理问题 引发自主性和控制问题的伦理讨论 CoT链式思维的出现将大模型分为了两类:“概率预测(快速反应)”模型和“链式推理(慢速思考)”模型。 前者适合快速反馈,处理即时任务;后者通过推理解决复杂问题。了解它们的差异有助于根据任务需求选择合 适的模型,实现最佳效果。 创意引导能力 设计能激发AI创新思维的提示语 利用类比、反向思考等技巧拓展AI输出的可能性 巧妙结合不同领域概念,产生跨界创新 结果优化能力 分析AI输出,识别改进空间 通过迭代调整提示语,优化输出质量 设计评估标准,量化提示语效果 跨域整合能力 将专业领域知识转化为有效的提示语 利用提示语桥接不同学科和AI能力 创造跨领域的创新解决方案 系统思维 设计多步骤、多维度的提示语体系0 码力 | 103 页 | 5.40 MB | 8 月前3
2024 中国开源开发者报告人类语言就是一种高度抽象、跨模态、表达力充分的符号系统,同时它作为知识的载体,自 然地存在大量数据可用于训练,还蕴含了人类的思维模式。 在此基础上训练得到的 LLM,自然具备被诱导出类人思考的潜力。在 COT(思维链)【4】、 TOT(思维树)【5】等技术的加持下,大模型正在学习拆解自己的“思维”,OpenAI 的 o1 就是 典型案例,强化了推理能力的同时,也大大缓解了幻觉问题。 2. 大模型做不到的,“现存工具”强势补位。 化测量、监控和调 试他们的 AI 应用系统。 展望未来,o1 模型的发布标志着大模型研究进入了新的时代。o1 模型的推理能力提升对 AI 基础设施提出了更高的要求,例如并行计算部分思维链路、减少不必要的思维过程等。研究 的重点重新回到了算法层面,而非简单的算力堆砌,这对于中小型模型开发公司和学术界而言是 一大利好。o1 模型的更强推理能力推动了越来越多真正的 autopilot 类产品进入⽇常生活,预 推理算力的爆发式增长,将会转移基础设施建设的重心 OpenAI 的 o1 模型以其思维链式思考(Chain of Thought)模式,为大模型的推理带来了 新的方向。这种模式通过模拟人类解决问题的思维方式,显著提升了模型的推理能力,使大模型 在解决复杂的推理任务上表现出了超越以往的卓越性能,其效率也远超其他模型。 但这意味着,类 o1 大模型在推理阶段需要更多的计算资源,思维链的推理模式相当于从原 来的单次推理变成了多次0 码力 | 111 页 | 11.44 MB | 8 月前3
【周鸿祎清华演讲】DeepSeek给我们带来的创业机会-360周鸿祎-202502高质量发展注入强大动能 大模型的进一步突破将引领人类社会进入智能化时代,对我们的生活方式、生产方式带来巨大变革 重塑经济图景 解决复杂问题 7政企、创业者必读 8 AI不仅是技术革新,更是思维方式和社会结构的变革 国家 产业 个人 企业政企、创业者必读 人工智能发展历程(一) 从早期基于规则的专家系统,走向基于学习训练的感知型AI 从基于小参数模型的感知型AI,走向基于大参数模型的认知型AI 全面超越人类的人工智能在逻辑上不成立政企、创业者必读 15 DeepSeek出现之前的十大预判 之二 慢思考成为新的发展模式 大模型发展范式正在从「预训练」转向「后训练」和「推理时计算」 大模型厂商都在探索慢思考、思维链技术政企、创业者必读 DeepSeek出现之前的十大预判 之三 模型越做越专 除了少数科技巨头,大多数公司都专注于做专业大模型 MoE架构盛行,本质是多个专家模型组成一个大模型 慢 人类真正智力表现 的形式 直觉经验型 速度快、准确性低 GPT、DeepSeek-V3擅长的 思考方式 推理能力获得突破的关键是学会了「慢思考」 例:课堂提问 快问快答 长思维链强大的推理能力是真正人类智力的体现 预训练大模型是人记忆和学习的能力,推理模型是对复杂问题 进行规划、分解、预测的能力,实现了真正的慢思考 28 例:课后作业 仔细思考政企、创业者必读0 码力 | 76 页 | 5.02 MB | 5 月前3
清华大学 DeepSeek+DeepResearch 让科研像聊天一样简单响应速度快,高效输出数据分析 结果,分析各因素对关键指标生 存率的影响,语言表达自然,重 点突出结合历史背景对数据规律 进行验证,但没有察觉数据异常。 DeepSeek R1 详细展示长思维链,精准提取关键指 标“幸存率”,分析多个因素特征对 幸存率的影响,结合历史背景对数据 及规律进行验证,并敏锐察觉数据异 常,提出了异常处理建议。 1、读取titanic遇难者名单excel 且格式较为简化,不符合学术 引用的标准,在学术规范方面 存在一定不足 提供自动生成参考文献的功能, 在中文文献的引用格式上比较 标准,能够确保格式的规范化 Co-STORM通过多智能体协作 对话生成动态思维导图,帮助 用户发现信息盲点并组织内容, 进一步提升了综述的完整性和 全面性 综上所述,在生成综述的准确性、逻辑性、完整性及可读性方面, 元知AI综述工具依托于真实的学术数据库,具备较 力, 使其在数学、编程和自然语言推理等任务上表现出色。 传统依赖: 大规模监督微调(SFT) 创新思路: 强化学习(RL)驱动 推理效率 • 长思维链支持:DeepSeek R1 支持长链推理,能够生成数万字的 思维链,显著提高复杂任务的推理准确性,其长链推理能力在数学、 编程和自然语言推理等任务中表现出色。 • 多模态任务处理:DeepSeek R1 在多模态任务中表现出色,能够0 码力 | 85 页 | 8.31 MB | 8 月前3
阿里巴巴核心应用洛地 Service Mesh 的挑战与机过地方重复造轮子。阿里巴巴曾属于第二种原因有……重复运维,多语言支持困境 NodeJS Java C++ Golang 运维系统云原生时代快速赋能 Biz APP Non Ali Biz框架思维转向平面思维 Service Mesh Biz Non Ali Biz将中间件能力下层到基础层 业务 (Java/Go/C++ 等) Serverless 业务 (Java/Go/C++ 等)0 码力 | 22 页 | 6.61 MB | 6 月前3
go-zero开源项目的成长史代码提交到 GitHub • 规划发展路线 • 梳理推⼴思路 • 找渠道、建社区 • 分析⽤户 go-zero 开源伊始 • 定⽬标 • 找渠道 • 建社区 • 有数据驱动的思维 • 分析渠道 • 分析⽤户 • 分析ROI go-zero 开源伊始 • 技术分享 • GoCN • Go夜读 • InfoQ • ArchSumit go-zero0 码力 | 31 页 | 4.83 MB | 9 月前3
进击的 Traefik | 云原生边缘路由器探秘云原生边缘路由器探秘杨川胡(阳明) 知群后台负责人,原小米视频后台高级研发 ,《Prometheus 深入浅出》作者,「k8s技 术圈」社区作者,现阶段专注于云原生技术 领域,希望成为一个有产品思维的工程师1 Traefik 介绍 2 Traefik 2.0 核心概念 3 Traefik With Docker 4 Traefik With KubernetesTraefik 是什么?0 码力 | 35 页 | 8.58 MB | 6 月前3
清华大学第二弹:DeepSeek赋能职场默的?情绪化? 有威胁性? "A"代表 "Audience", 受众是谁。 小 白用户?专业人 群?未成年群体? 女性群体? DeepSeek R1提示语技巧(开放性) • 不需要角色设定 • 不需要思维链提示 • 不需要结构化提示词 • 不需要给示例 • 不需要做太多解释 • …… 另一种路径:DeepSeek R1 作为智能体 ü 角色 ü 功能 ü 技能 ü 约束 ü 工作流程0 码力 | 35 页 | 9.78 MB | 8 月前3
共 34 条
- 1
- 2
- 3
- 4













