Istio + MOSN 在 Dubbo 场景下的探索之路多点生活在 Service Mesh 上的实践 Istio + MOSN 在 Dubbo 场景下的探索之路 陈鹏 多点生活 平台架构组研发工程师1/23 自我介绍 • 陈鹏、多点生活平台架构组研发工程师 • 开源项目与云原生爱好者 • 多年网上商城、支付系统相关开发经验 • 2019 年至今从事云原生和 Service Mesh 相关开发工作2/23 /01 /02 /03 为什么需要 为什么需要 Service Mesh 改造 探索 Istio 技术点 Dubbo 场景下 的改造 • 对比传统微服务架构 • 和 Service Mesh 化 之后有哪些优缺点 • MCP • Pilot • xDS • MOSN 结合 Istio 的技术点, 介绍多点生活目前的 探 索 以 及 服 务 发 现 Demo 的演示3/23 为什么需要 Service Mesh : RDS • cluster : CDS 和 EDS13/23 MOSN-listener14/23 MOSN-routers15/23 MOSN-cluster16/23 Dubbo 场景下的改造 /03 从数据面、控制面两个方面来介绍如何改造17/23 改造方案1 Istio+Envoy • 通过创建 EnvoyFilter 资源来给 xDS 资源打 patch • Envoy0 码力 | 25 页 | 3.71 MB | 6 月前3
函数计算在双11小程序场景中的应用函数计算在双11小程序场景中的应用 关注“阿里巴巴云原生”公众号 回复 1124 获取 PPT自我介绍 •吴天龙(花名: 木吴) •阿里云函数计算技术专家 •2013 年加入阿里云,参与分布式数据库, 对象存储等产品的开发。现任阿里云函数 计算架构师,聚焦于 Serverless 产品功 能和大规模资源伸缩调度、性能优化等系 统核心能力的研发。❖ 函数计算介绍 ❖ 双11小程序场景介绍 ❖ 技术挑战 技术挑战 ❖ Demo 目录函数计算-介绍 • 通用Serverless计算平 台 • 与云端事件源无缝集成 • 弹性伸缩,按量付费函数计算-介绍双11小程序场景介绍小程序场景的挑战 n 安全隔离 n 开发效率 n 大量的小程序是不活跃的 n 活动高峰期流量激增函数计算-冷启动优化 Download & Extract Code User Code Init Logic Execution0 码力 | 13 页 | 6.95 MB | 6 月前3
TiDB中文技术文档Ansible 常见运维操作 TiDB 运维文档 Try TiDB - 3 - 本文档使用 书栈(BookStack.CN) 构建 TiDB 运维文档 软硬件环境需求 部署集群 Ansible 部署方案(强烈推荐) 离线 Ansible 部署方案 Docker 部署方案 Docker Compose 部署方案 跨机房部署方案 配置集群 参数解释 TiDB 配置项解释 开启 TLS 验证 生成自签名证书 监控集群 事务隔离级别 错误码与故障诊断 与 MySQL 兼容性对比 TiDB 内存控制 高级功能 历史数据回溯 垃圾回收 (GC) TiDB 运维文档 软硬件环境需求 部署集群 Ansible 部署方案(强烈推荐) 离线 Ansible 部署方案 Docker 部署方案 Docker Compose 部署方案 跨机房部署方案 配置集群 参数解释 README - 8 - 本文档使用 书栈(BookStack Analytical Processing) 场景提供一站式的解决方案。 TiDB 具备如下核心特性: 高度兼容 MySQL 大多数情况下,无需修改代码即可从 MySQL 轻松迁移至 TiDB,分库分表后的 MySQL 集群亦可通过 TiDB 工具进行实时迁移。 水平弹性扩展 通过简单地增加新节点即可实现 TiDB 的水平扩展,按需扩展吞吐或存储,轻松应对高并发、海量数据场景。 分布式事务 TiDB 100%0 码力 | 444 页 | 4.89 MB | 6 月前3
TiDB v8.5 中文手册· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 38 2.1.2 四大核心应用场景 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 100 3.4.1 HTAP 适用场景 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 532 5.2.3 设置 TiDB 节点的临时空间(推荐)· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 532 5.2.4 检测及关闭目标部署机器的防火墙·0 码力 | 5095 页 | 104.54 MB | 10 月前3
TiDB v8.4 中文手册· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 33 2.1.2 四大核心应用场景 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 96 3.4.1 HTAP 适用场景 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 528 5.2.3 设置 TiDB 节点的临时空间(推荐)· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 529 5.2.4 检测及关闭目标部署机器的防火墙·0 码力 | 5072 页 | 104.05 MB | 10 月前3
TiDB v8.2 中文手册· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 34 2.1.2 四大核心应用场景 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 80 3.4.1 HTAP 适用场景 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 461 5.2.3 设置 TiDB 节点的临时空间(推荐)· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 461 5.2.4 检测及关闭目标部署机器的防火墙·0 码力 | 4987 页 | 102.91 MB | 10 月前3
DeepSeek从入门到精通(20250204)DeepSeek-R1是其开源的推理模型,擅长处理复杂任务且可免费商用。 Deepseek可以做什么? 直接面向用户或者支持开发者,提供智能对话、文本生成、语义理解、计算推理、代码生成补全等应用场景, 支持联网搜索与深度思考模式,同时支持文件上传,能够扫描读取各类文件及图片中的文字内容。 文本生成 表格、列表生成(如日程安排、菜谱) 代码注释、文档撰写 结构化生成 文章/故事/诗歌写作 劣势领域 发散性任务(如诗歌创作) 需要严格逻辑链的任务(如数学证明) 性能本质 专精于逻辑密度高的任务 擅长多样性高的任务 强弱判断 并非全面更强,仅在其训练目标领域显著优于通用模型 通用场景更灵活,但专项任务需依赖提示语补偿能力 • 例如:GPT-3、GPT-4(OpenAI),BERT(Google),主要用于语言生成、语言理解、文本分类、翻译 等任务。 快思慢想:效能兼顾 全局视野 不要对推理模型使用“启发式”提示(如角色扮演),可能干扰其逻辑主线。 • 不要对通用模型“过度信任”(如直接询问复杂推理问题,需分步验证结果)。 从“下达指令”到“表达需求” 策略类型 定义与目标 适用场景 示例(推理模型适用) 优势与风险 指令驱动 直接给出明确步骤或 格式要求 简单任务、需快速执行 “用Python编写快速排序函 数,输出需包含注释。” ✅ 结果精准高效 ❌ 限制模型自主优化空0 码力 | 104 页 | 5.37 MB | 8 月前3
清华大学 DeepSeek 从入门到精通DeepSeek-R1是其开源的推理模型,擅长处理复杂任务且可免费商用。 Deepseek可以做什么? 直接面向用户或者支持开发者,提供智能对话、文本生成、语义理解、计算推理、代码生成补全等应用场景, 支持联网搜索与深度思考模式,同时支持文件上传,能够扫描读取各类文件及图片中的文字内容。 文本生成 表格、列表生成(如日程安排、菜谱) 代码注释、文档撰写 结构化生成 文章/故事/诗歌写作 劣势领域 发散性任务(如诗歌创作) 需要严格逻辑链的任务(如数学证明) 性能本质 专精于逻辑密度高的任务 擅长多样性高的任务 强弱判断 并非全面更强,仅在其训练目标领域显著优于通用模型 通用场景更灵活,但专项任务需依赖提示语补偿能力 • 例如:GPT-3、GPT-4(OpenAI),BERT(Google),主要用于语言生成、语言理解、文本分类、翻译 等任务。 快思慢想:效能兼顾 全局视野 不要对推理模型使用“启发式”提示(如角色扮演),可能干扰其逻辑主线。 • 不要对通用模型“过度信任”(如直接询问复杂推理问题,需分步验证结果)。 从“下达指令”到“表达需求” 策略类型 定义与目标 适用场景 示例(推理模型适用) 优势与风险 指令驱动 直接给出明确步骤或 格式要求 简单任务、需快速执行 “用Python编写快速排序函 数,输出需包含注释。” ✅ 结果精准高效 ❌ 限制模型自主优化空0 码力 | 103 页 | 5.40 MB | 9 月前3
Nacos架构&原理
阿里云开发者“藏经阁” 海量电子手册免费下载 特别鸣谢: 目录 作者 6 推荐序 7 前⾔ 9 序言 9 简介 13 Nacos 简介 13 Nacos 架构 17 Nacos 总体设计 17 Nacos 架构 17 Nacos 配置模型 21 Nacos 内核设计 28 Nacos ⼀致性协议 28 Nacos 自研 Distro 协议 38 Nacos 通信通道 杨翊(席翁) 程露 钱陈(潕量) 张龙 范扬(扬少) 张斌斌 李志鹏(怀成) 黄文清 吴援飘(草谷) 吴毅挺 任浩军 张波 王建伟(正己) 卿亮 许进 7 > 推荐序 推荐序 阿里巴巴合伙人 - 蒋江伟(小邪) 随着企业加速数字化升级,越来越多的系统架构采用了分布式的架构,主要目的是为了解决集中化 和互联网化所带来的架构扩展性和面对海量用户请求的技术挑战。这里面其中有⼀个关键点是软负 准确的在 3 秒钟之内推送到每⼀ 个计算节点,这是当时提出的⼀个要求,围绕这个要求,系统要做大量的研发和改造,类似的这种 关键的技术挑战点还非常非常的多。本书就是将面对复杂的分布式计算场景,海量并发的业务场景, 对软负载⼀个系统的进行阐述,通过 Nacos 开源分享阿里软负载最佳实践,希望能够帮助到各位开 发者,各位系统架构师,少走弯路。 阿里巴巴云原生应用平台负责人 - 丁宇(叔同)0 码力 | 326 页 | 12.83 MB | 10 月前3
清华大学 DeepSeek+DeepResearch 让科研像聊天一样简单集社交媒体数据、数据库内容、文本数据、接口数据等。 通过数据清洗、数据集成、数据变换、特征工程等方式,实 现数据纠错、数据整合、格式转换、特征提取等。 对数据进行诊断、预测、关联、聚类分析,常用于问题 定位、需求预测、推荐系统、异常检测等。 对数据进行分类、社交网络分析或时序模式挖掘,常用 于客户细分、信用评分、社交媒体营销、股价预测等。 将数据转化为统计图、热力图、网络关系图、词云、树形 图等,用于揭示数据中蕴含的模式、趋势、异常和洞见。 本质:以多agent实现从数据采集到可视全流程 模型特点 Claude 3.5 sonnet 平衡性能:在模型大小和 性能之间取得平衡,适合 中等规模任务。 多模态支持:支持文本和 图像处理,扩展应用场景。 可解释性:注重模型输出 的可解释性和透明性。 DeepSeek R1 高效推理:专注于低延迟和 高吞吐量,适合实时应用。 轻量化设计:模型结构优化, 资源占用少,适合边缘设备 (如医疗、法律)进行优化, 提供高精度结果。 长文本处理:擅长处理长文本 和复杂文档,适合专业场景。 定制化能力:支持用户自定义 训练和微调,适应特定需求。 Open AI o3 mini 小型化设计:轻量级模型, 适合资源有限的环境。 快速响应:优化推理速度, 适合实时交互场景。 通用性强:适用于多种自 然语言处理任务,如对话 生成和文本理解。 爬虫数据采集0 码力 | 85 页 | 8.31 MB | 8 月前3
共 129 条
- 1
- 2
- 3
- 4
- 5
- 6
- 13













