积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部后端开发(12)综合其他(11)人工智能(11)Julia(10)Python(2)Tornado(2)系统运维(1)网络与安全(1)

语言

全部中文(繁体)(10)英语(5)zh(4)[zh](1)fj(1)日语(1)kor(1)ro(1)

格式

全部PDF文档 PDF(22)DOC文档 DOC(1)其他文档 其他(1)
 
本次搜索耗时 0.100 秒,为您找到相关结果约 24 个.
  • 全部
  • 后端开发
  • 综合其他
  • 人工智能
  • Julia
  • Python
  • Tornado
  • 系统运维
  • 网络与安全
  • 全部
  • 中文(繁体)
  • 英语
  • zh
  • [zh]
  • fj
  • 日语
  • kor
  • ro
  • 全部
  • PDF文档 PDF
  • DOC文档 DOC
  • 其他文档 其他
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 TVM Meetup: Quantization

    ingests a FP32 graph and a small dataset • Finds suitable quantization scale • Produces a quantized graph • Compiling Pre-quantized models – QNN Dialect • TVM ingests a pre-quantized graph in TFLite or rights reserved. TVM Overview Framework Graph Mxnet TF …. parsers Relay Graph Target-independent Relay passes Target-optimized graph Target-dependent Relay passes Intel x86 ARM CPU Nvidia GPU targets AutoTVM – Tuning the kernels Optimized Binary Codegen – LLVM, Cuda, C, … Framework Parsers Graph level optimizations Tensor-level optimizations Machine code generation© 2019, Amazon Web Services
    0 码力 | 19 页 | 489.50 KB | 5 月前
    3
  • pdf文档 Bring Your Own Codegen to TVM

    from tvm import relay 2. Load a pretrained network mod, params = relay.testing.mobilenet.get_workload(batch_size=1) 3. Partition and build the network with an external codegen mod = relay.build_extern(mod build_extern(mod, “dnnl”) 4. Run the inference exe = relay.create_executor(“vm”, mod=mod, ctx=tvm.cpu(0)) data = np.random.uniform(size=(1, 3, 224, 224)).astype(“float32”) out = exe.evaluate()(data, **params) How System Overview Relay IR Graph Annotation with Your Annotator Graph Partitioning Your Codegen LLVM, CUDA, Metal, VTA Serialized Subgraph Library Relay Runtime (VM, Graph Runtime, Interpreter)
    0 码力 | 19 页 | 504.69 KB | 5 月前
    3
  • pdf文档 Dynamic Model in TVM

    dependent: arange, nms, etc. ○ Control flow: concatenate within a while loop Limitation of TVM/graph runtime ● Cannot compile and run dynamic models© 2019, Amazon Web Services, Inc. or its Affiliates at runtime ● Virtual machine as a new runtime for Relay ● Dynamic codegen (WIP) ○ Kernel dispatch for a single op ○ Graph dispatch for a (sub-)graph In collaboration with Jared Roesch, Zhi Chen, Wei Wei Chen© 2019, Amazon Web Services, Inc. or its Affiliates. All rights reserved. “Any” in Relay typing Any: represent an unknown dimension at compilation time. Define a tensor type: Tensor<(Any, 3, 32
    0 码力 | 24 页 | 417.46 KB | 5 月前
    3
  • pdf文档 XDNN TVM - Nov 2019

    Tensor Graph Optimization Framework Tensor Graph to Xilinx Tensor Graph Frontend Deep Learning Frameworks https://github.com/xilinx© Copyright 2018 Xilinx TVM as Unified ML Front End >> 6 Relay (and (and NNVM) Graph Parser XIR Compiler Quantizer Partitioner @relay.transform.module_pass(opt_level=4) class AccelModule:© Copyright 2018 Xilinx TVM Partitioning >> 7 Subgraph 1 Parallel Subgraphs supported/not supported, pattern matching graph colorization - Choices how to partition especially for multi-branch networks (i.e. YOLOv3, SSD)© Copyright 2018 Xilinx TVM Graph Partitioning/Fusion >> 8 Subgraph
    0 码力 | 16 页 | 3.35 MB | 5 月前
    3
  • pdf文档 TVM: Where Are We Going

    ASIC Optimization AutoTVM Device FleetExisting Deep Learning Frameworks High-level data flow graph Hardware Primitive Tensor operators such as Conv2D eg. cuDNN Offload to heavily optimized intensiveMachine Learning based Program Optimizer TVM: Learning-based Learning System High-level data flow graph and optimizations Directly generate optimized program for new operator workloads and hardware module/pass, type system, with function variants supportCompilation Flow under the New Infra IRModule (relay::Function) IRModule (te::Function, ExternFunc, …) runtime::Module High-level optimizations (Auto)
    0 码力 | 31 页 | 22.64 MB | 5 月前
    3
  • pdf文档 Facebook -- TVM AWS Meetup Talk

    OpenAI- Add relay.nn.sparse_dense for block-sparse matrix multiplication (~50 lines of TVM IR) - Add relay.reinterpret to implement rational approximations in user space (~10 lines of Relay IR) - A few icache/ dcache - also available today in FBGEMMPyTorch and TVM - Lots of opportunity in PyTorch - Graph optimization - Existing fusion infrastructure fairly limited (CUDA-only, injective-only) - Kernel synthesis - Dynamic shapes, stride specialization - Impedance mismatch with PyTorch JIT IR and Relay IR - Watch this space :)Big thanks to the community
    0 码力 | 11 页 | 3.08 MB | 5 月前
    3
  • pdf文档 TVM@AliOS

    TVM @ Hexagon DSP 人NiOS ! 驱动万物知 Tensorflow deploy.so / deploy.json / deploy.bin | NNVM / Relay 让 Graph Optimization 站 站 Compile | libtvm_hexagon_runtime.so Alios TVM @ Hexagon DSP 。 Compute
    0 码力 | 27 页 | 4.86 MB | 5 月前
    3
  • pdf文档 OctoML OSS 2019 11 8

    recently become very Popular and require first class support in TVML. ee What we've done: o Extend the relay ONNX frontend to support all opset versions of BERT. 里This enables importing of native ONNX models Reshape could be implemented as a non-copying view instead. We wantto add this form of view as a relay intrinsic to enable highly fused and optimized transformer models. olo o o QQ octoML BERT has many
    0 码力 | 16 页 | 1.77 MB | 5 月前
    3
  • pdf文档 julia 1.10.10

    all values in Julia are true objects having a type that belongs to a single, fully connected type graph, all nodes of which are equally first-class as types. 120CHAPTER 11. TYPES 121 • There is no meaningful 11.2 Abstract Types Abstract types cannot be instantiated, and serve only as nodes in the type graph, thereby describing sets of related concrete types: those concrete types which are their descendants commonly called "top" because it is at the apex of the type graph. Julia also has a predefined abstract "bottom" type, at the nadir of the type graph, which is written as Union{}. It is the exact opposite
    0 码力 | 1692 页 | 6.34 MB | 3 月前
    3
  • pdf文档 Julia 1.10.9

    all values in Julia are true objects having a type that belongs to a single, fully connected type graph, all nodes of which are equally first-class as types. 120CHAPTER 11. TYPES 121 • There is no meaningful 11.2 Abstract Types Abstract types cannot be instantiated, and serve only as nodes in the type graph, thereby describing sets of related concrete types: those concrete types which are their descendants commonly called "top" because it is at the apex of the type graph. Julia also has a predefined abstract "bottom" type, at the nadir of the type graph, which is written as Union{}. It is the exact opposite
    0 码力 | 1692 页 | 6.34 MB | 3 月前
    3
共 24 条
  • 1
  • 2
  • 3
前往
页
相关搜索词
TVMMeetupQuantizationBringYourOwnCodegentoDynamicModelinXDNNNov2019WhereAreWeGoingFacebookAWSTalkAliOSOctoMLOSS11julia1.1010Julia
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩