Rust 程序设计语言 简体中文版 1.85.0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249 12.1. 接受命令行参数 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 将错误信息输出到标准错误而不是标准输出 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 276 13. 函数式语言特性:迭代器与闭包 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ,Rust 团队希望使系统概念能为更多人所易于理解,特别是编程新手。 公司 数百家大小规模的公司在生产环境中使用 Rust 完成各种任务,包括命令行工具、Web 服务、 DevOps 工具、嵌入式设备、音视频分析与转码、加密货币、生物信息学、搜索引擎、物联网 (IOT)程序、机器学习,甚至是 Firefox 浏览器的重要部分。 开源开发者 Rust 适合那些希望构建 Rust 编程语言、社0 码力 | 562 页 | 3.23 MB | 27 天前3
人工智能安全治理框架 1.0来性能下降、 决策错误等诸多问题。- 4 - 人工智能安全治理框架 (d)被窃取、篡改的风险。参数、结构、功能等算法核心信息,面临被 逆向攻击窃取、修改,甚至嵌入后门的风险,可导致知识产权被侵犯、商业机 密泄露,推理过程不可信、决策输出错误,甚至运行故障。 (e)输出不可靠风险。生成式人工智能可能产生 “幻觉”,即生成看似合理, 实则不符常理的内容,造成知识偏见与误导。 (f)对抗 等 全生命周期的安全防护能力。 5.2 建立人工智能服务可追溯管理制度。对面向公众服务的人工智能 系统,通过数字证书技术对其进行标识管理。制定出台人工智能生成合成内容 标识标准规范,明确显式、隐式等标识要求,全面覆盖制作源头、传播路径、 分发渠道等关键环节,便于用户识别判断信息来源及真实性。- 11 - 人工智能安全治理框架 5.3 完善人工智能数据安全和个人信息保护规范。针对人工智能技术 能、限制和隐私政策,准确认知人工智能产品做出判断决策的局限性,合理设 定使用预期。 (c)社会公众应提高个人信息保护意识,避免在不必要的情况下输入敏 感信息。 (d)社会公众应了解人工智能产品的数据处理方式,避免使用不符合隐 私保护原则的产品。 (e)社会公众在使用人工智能产品时,应关注网络安全风险,避免人工 智能产品成为网络攻击的目标。 (f)社会公众应注意人工智能产品对儿童和青少年的影响,预防沉迷及 过度使用。-0 码力 | 20 页 | 3.79 MB | 1 月前3
【周鸿祎清华演讲】DeepSeek给我们带来的创业机会-360周鸿祎-202502 从早期基于规则的专家系统,走向基于学习训练的感知型AI 从基于小参数模型的感知型AI,走向基于大参数模型的认知型AI 从擅长理解的认知型AI,发展到擅长文字生成的生成式AI 从语言生成式AI,发展到可理解和生成声音、图片、视频的多模态AI 从生成式AI,发展到推理型AI 专家系统 感知AI 认知AI 生成式AI 多模态AI 推理式AI 9政企、创业者必读 人工智能发展历程(二) 大模型安全之战 • 探索超越人类的超级人工 智能AGI • 不仅是科技之争,更是国 运之争 • 不发展是最大的不安全, 发挥举国体制优势,打赢 追赶之战 • 大模型带来前所未有安全 挑战 • 外挂式传统安全手段难以 应对 • 应对模型安全新挑战,打 赢未雨绸缪之战 • 大模型是能力而非产品, 结合场景才能发挥价值 • 中国拥有最完整的产业链、 最全的工业门类、最丰富 的场景 • 发挥场景优势,加速传统 先做得更大,然后探索能做多小政企、创业者必读 DeepSeek出现之前的十大预判 之五 知识的质量和密度决定大模型能力 高质量数据、合成数据使模型知识密度的快速增长 大模型能以更少的参数量达到更高的性能 360联合北大研发:5%参数量逼近Deepseek-R1满血性能 18政企、创业者必读 DeepSeek出现之前的十大预判 之六 成本越来越低 过去一年,大模型成本「自由落体」 国外:G0 码力 | 76 页 | 5.02 MB | 5 月前3
共 3 条
- 1













