人工智能安全治理框架 1.0领域用户和社会公众用户,开发应用人工智能技术的若干安全指导规范。 3. 人工智能安全风险分类 人工智能系统设计、研发、训练、测试、部署、使用、维护等生命周期 各环节都面临安全风险,既面临自身技术缺陷、不足带来的风险,也面临不当 使用、滥用甚至恶意利用带来的安全风险。 3.1 人工智能内生安全风险 3.1.1 模型算法安全风险 (a)可解释性差的风险。以深度学习为代表的人工智能算法内部运行逻 辑复杂,推理过程属黑 误导、影响,以至操纵人工智能模型,使其产生错误的输出,甚至造成运行瘫痪。 3.1.2 数据安全风险 (a)违规收集使用数据风险。人工智能训练数据的获取,以及提供服务 与用户交互过程中,存在未经同意收集、不当使用数据和个人信息的安全风险。 (b)训练数据含不当内容、被 “投毒” 风险。训练数据中含有虚假、偏见、 侵犯知识产权等违法有害信息,或者来源缺乏多样性,导致输出违法的、不良 的、偏激的等有害信息内容。训练数据还面临攻击者篡改、注入错误、误导数 不完备、标注人员能力不够、标注错误等问题,不仅会影响模型算法准确度、 可靠性、有效性,还可能导致训练偏差、偏见歧视放大、泛化能力不足或输出 错误。 (d)数据泄露风险。人工智能研发应用过程中,因数据处理不当、非授 权访问、恶意攻击、诱导交互等问题,可能导致数据和个人信息泄露。 3.1.3 系统安全风险 (a)缺陷、后门被攻击利用风险。人工智能算法模型设计、训练和验证 的标准接口、特性库和工具包0 码力 | 20 页 | 3.79 MB | 1 月前3
Rust 程序设计语言 简体中文版 1.85.0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 3.5. 控制流 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115 6.2. match 控制流结构 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122 6.3. if let 和 let else 简洁控制流 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132 7.2. 定义模块来控制作用域与私有性 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .0 码力 | 562 页 | 3.23 MB | 27 天前3
【周鸿祎清华演讲】DeepSeek给我们带来的创业机会-360周鸿祎-202502工 序 模 型 导 图 原料 废钢 烧结 球团 焦化 炼铁 炼钢 精炼 连铸 热轧 冷轧 销售 • 料场环境实时监控 • 人员越界安全监测 • 回转窑窑况智能分 析 • 原料无人天车吊装 控制 • 生产现场运输状态 监控 • 现场路线智能调度 • 智能化能源调度 • 料场智能调度 • 燃料水分视觉分析 • 多角度废钢图像 采集 • 废钢智能定级 • 杂质识别 & 扣杂 烧结烟气 S02 排放在 线预测与控制 • 构建能源消耗预测 • 智能故障诊断 • 挡板位移检测 • 皮带划痕、 撕裂、 跑偏检测预警 • 1球团皮带智能监测 • 生球粒度分布在线 识别 • 球团1颗粒粒度检测 • 球团1现场生产安全 态势感知与预警 • 皮带机预测性维护 • 建立设备健康模型 • 焦化皮带智能监测 • 生产现场动作远程控制 • 焦化现场生产安全态势 感知与预警 炼焦煤分级调湿工艺稳 定协调控制 • 焦化皮带智能监测 • 生产现场动作远程控制 • 焦化现场生产安全态势 感知与预警 • 部署打滑预测分析 • 能源计划 • 炼焦煤分级调湿工艺稳 定协调控制 • 危险物识别 • 人员安全监测 • 高炉料面温度检测 • 高炉料面可视化监控 • 炉顶布料效果评定 • 远程换钎 • 中间产品无人天车吊装 控制 • 废品无人天车吊装控制 • 铁水质量预报 • 高炉温度分布0 码力 | 76 页 | 5.02 MB | 5 月前3
TVM工具组前端 当前各大芯片厂商的部署工具大多数都支持,支持 caffe 前端有利于提高竞争力。 开源社区 存量的开源 caffe 网络模型众多,TVM 直接支持 caffe 让大家更方便尝试 caffe 资源。绝赞招聘中 当前进度 无 caffe 依赖 from_caffe 直接导入 caffe 模型文件,不需要预先安装 caffe 。 net 已测试网络:alexnet / densenet1210 码力 | 6 页 | 326.80 KB | 5 月前3
共 4 条
- 1













