Rust 程序设计语言 简体中文版 1.85.0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 3.1. 变量与可变性 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 4.2. 引用与借用 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132 7.2. 定义模块来控制作用域与私有性 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .0 码力 | 562 页 | 3.23 MB | 27 天前3
【周鸿祎清华演讲】DeepSeek给我们带来的创业机会-360周鸿祎-202502降240倍 国内:大模型「亏本」卖,可以「白嫖」大模型API能力 19政企、创业者必读 DeepSeek出现之前的十大预判 之七 多模态越来越重要 由文本生成迈向图像、视频、3D内容与世界模拟 多模态模态在能力变强的同时,规模正在变小 20政企、创业者必读 21 DeepSeek出现之前的十大预判 之八 智能体推动大模型快速落地 能够调用各种工具,具有行动能力 写AI发展方向 30政企、创业者必读 DeepSeek在用户体验上实现了三件事 更加理解用户需求,降低Prompt要求 直接呈现思维过程,展现像真人一样思考的能力 可实时联网,把搜索能力与推理能力结合 DeepSeek颠覆式创新——用户体验 具备强大推理能力,思维过程更加缜密,智能性提升 用起来更像真人,写作能力更强,想象力更丰富 31政企、创业者必读 DeepSeek-R1用户体验改善的作用 S02 排放在 线预测与控制 • 构建能源消耗预测 • 智能故障诊断 • 挡板位移检测 • 皮带划痕、 撕裂、 跑偏检测预警 • 1球团皮带智能监测 • 生球粒度分布在线 识别 • 球团1颗粒粒度检测 • 球团1现场生产安全 态势感知与预警 • 皮带机预测性维护 • 建立设备健康模型 • 焦化皮带智能监测 • 生产现场动作远程控制 • 焦化现场生产安全态势 感知与预警 • 部署打滑预测分析0 码力 | 76 页 | 5.02 MB | 5 月前3
人工智能安全治理框架 1.0(e)输出不可靠风险。生成式人工智能可能产生 “幻觉”,即生成看似合理, 实则不符常理的内容,造成知识偏见与误导。 (f)对抗攻击风险。攻击者通过创建精心设计的对抗样本数据,隐蔽地 误导、影响,以至操纵人工智能模型,使其产生错误的输出,甚至造成运行瘫痪。 3.1.2 数据安全风险 (a)违规收集使用数据风险。人工智能训练数据的获取,以及提供服务 与用户交互过程中,存在未经同意收集、不当使用数据和个人信息的安全风险。 (b)训练数据含不当内容、被 (c)两用物项和技术滥用风险。因不当使用或滥用人工智能两用物项和 技术,对国家安全、经济安全、公共卫生安全等带来严重风险。包括极大降低 非专家设计、合成、获取、使用核生化导武器的门槛;设计网络武器,通过自 动挖掘与利用漏洞等方式,对广泛潜在目标发起网络攻击。 3.2.3 认知域安全风险 (a)加剧 “信息茧房” 效应风险。人工智能将广泛应用于定制化的信息 服务,收集用户信息,分析用户类型、需求、意图、喜好、行为习惯,甚至特 4 伦理域安全风险 (a)加剧社会歧视偏见、扩大智能鸿沟的风险。利用人工智能收集分析 人类行为、社会地位、经济状态、个体性格等,对不同人群进行标识分类、区 别对待,带来系统性、结构性的社会歧视与偏见。同时,拉大不同地区人工智 能鸿沟。 (b)挑战传统社会秩序的风险。人工智能发展及应用,可能带来生产工具、 生产关系的大幅改变,加速重构传统行业模式,颠覆传统的就业观、生育观、 教育观,对传统社会秩序的稳定运行带来挑战。0 码力 | 20 页 | 3.79 MB | 1 月前3
共 3 条
- 1













