积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部数据库(4)ClickHouse(4)

语言

全部中文(简体)(4)

格式

全部PDF文档 PDF(4)
 
本次搜索耗时 0.008 秒,为您找到相关结果约 4 个.
  • 全部
  • 数据库
  • ClickHouse
  • 全部
  • 中文(简体)
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 2. ClickHouse MergeTree原理解析-朱凯

    整个索引查询的逻辑,可以大致分为3个步骤: 1. 生成查询条件区间 WHERE ID = 'A003' ['A003', 'A003'] WHERE ID > 'A000' ('A000', +inf) WHERE ID < 'A188' (-inf, 'A188') WHERE ID LIKE 'A006%' ['A006', 'A007') 2. 递归交集判断 3. 合并MarkRange区间 索引的查询过程
    0 码力 | 35 页 | 13.25 MB | 1 年前
    3
  • pdf文档 4. ClickHouse在苏宁用户画像场景的实践

    tag-generate负责标签数据构建,保存到HDFS(MySQL中存储标签配置信息)  tag-loader向ClickHouse发送从HDFS导入标签数据的sql  to-ch-sql模块,将用户画像查询条件转换为ClickHouse sql诧句  用户画像平台通过Proxy从ClickHouse集群查询标签数据 Spark tag-generate tag-loader MySQL 输入条件 返回结果 场景描述 场景:限量发放10万张家电类优惠券,先预估出符合条件的用户数。 操作:用户指定标签及标签间的逡辑关系,统计出符合标签逡辑的人数。 标签表达式,包含标签、算术运算符、逡辑运算符、括号。 整形值,表示符合标签表达式的用户人数 例如: 23 user_number 100000 用户画像场景1—预估人数—示例 画像条件 查询SQL 查询SQL 24 用户画像场景2—人群圈选画像 输入条件 返回结果 场景描述 场景:对选出符合发优惠券条件的用户迚行画像分析,人群特征分析。 操作:用户指定标签及标签间的逡辑关系,查询出符合标签逡辑的用户ID数据集,然后对数 据集迚行用户画像分析。一条SQL完成人群圈选、用户画像两个劢作。 标签逡辑表达式,包含标签、算术运算符、逡辑运算符、括号。 查询出符合标签表达式的用户ID
    0 码力 | 32 页 | 1.47 MB | 1 年前
    3
  • pdf文档 蔡岳毅-基于ClickHouse+StarRocks构建支撑千亿级数据量的高可用查询引擎

    如何来补充ClickHouse 的短板; 4. ClickHouse的调优,运维介绍; 5. 应用总结; 全球敏捷运维峰会 广州站 根据实际业务场景需要来选择 1. 不固定的查询条件,不固定的汇总条件; 2. 数据量日益增量,每天要更新的数据量也不断增大; 3. 业务场景不断增多,涉及面越来越广; 4. 需要保证高可用并秒出; 5. 从Sql,Es, CrateDB, Kylin
    0 码力 | 15 页 | 1.33 MB | 1 年前
    3
  • pdf文档 ClickHouse在B站海量数据场景的落地实践

    按时间窗⼜确定上下游事件。 v 离线Spark与计算出事件路径及相关⽤户id的RBM。 v 离线计算结果导⼊ClickHouse做交互式路径分析。 漏斗分析 v 预定义事件漏⽃ v ⽀持各个事件单独设置过滤条件 v 查询时间跨度最⼤⼀个⽉ v 数据按user id做Sharding,查询下推 Future Work Future Work v ClickHouse集群容器化,提升物理集群资源使⽤率
    0 码力 | 26 页 | 2.15 MB | 1 年前
    3
共 4 条
  • 1
前往
页
相关搜索词
ClickHouseMergeTree原理解析朱凯苏宁用户画像场景实践蔡岳毅基于StarRocks构建支撑千亿数据数据量可用查询引擎海量落地
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩