积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部云计算&大数据(12)Apache Flink(12)

语言

全部英语(11)中文(简体)(1)

格式

全部PDF文档 PDF(12)
 
本次搜索耗时 0.013 秒,为您找到相关结果约 12 个.
  • 全部
  • 云计算&大数据
  • Apache Flink
  • 全部
  • 英语
  • 中文(简体)
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 Flow control and load shedding - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    Processing and Analytics Vasiliki (Vasia) Kalavri
 vkalavri@bu.edu Spring 2020 4/09: Flow control and load shedding ??? Vasiliki Kalavri | Boston University 2020 Keeping up with the producers • Producers (back-pressure, flow control) 2 ??? Vasiliki Kalavri | Boston University 2020 Load management approaches 3 ! Load shedder (a) Load shedding (b) Back-pressure (c) Elasticity Selectively drop records: Suitable for transient load increase. Scale resource allocation: • Addresses the case of increased load and additionally ensures no resources are left idle when the input load decreases. ??? Vasiliki
    0 码力 | 43 页 | 2.42 MB | 1 年前
    3
  • pdf文档 Streaming optimizations - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    selectivity • Dataflow optimizations • plan translation alternatives • Runtime optimizations • load management, scheduling, state management • Optimization semantics, correctness, profitability Topics University 2020 34 • Fission might be preferable to pipeline and task parallelism because it balances load more evenly • Data-parallel streaming languages enable fission by construction • Elastic scaling qualified: if load balancing is applied after fission, each instance must be capable of processing each item and have access to necessary state • Establish placement safety: if load balancing while performing
    0 码力 | 54 页 | 2.83 MB | 1 年前
    3
  • pdf文档 Stream ingestion and pub/sub systems - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    unpredictable delays • might be producing too fast • stream processor needs to keep up and not shed load • might be producing too slow or become idle • stream processor should be able to make progress communication, i.e. producer only needs to receive ack from broker 9 Communication patterns (I) Load balancing or shared subscription • A logical producer/consumer can be implemented by multiple physical tasks running in parallel • Ιf a producer generates events with high rate, we can balance the load by spawning several consumer processes • The broker can choose to send messages to consumers in
    0 码力 | 33 页 | 700.14 KB | 1 年前
    3
  • pdf文档 Skew mitigation - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    the ball at the least full bin: • when d=2, the maximum load is ln ln n / ln 2 + O(1), with high probability • when d>2, the maximum load keeps decreasing, but only by a constant factor 10 • Consider the maximum load is Θ(ln n/ln ln n), with high probability ??? Vasiliki Kalavri | Boston University 2020 Dynamic resource allocation • Choose one among n workers • check the load of each worker worker and send the item to the least loaded one • load checking for every item can be expensive • Choose two workers at random and send the item to the least loaded of those two • the system uses two
    0 码力 | 31 页 | 1.47 MB | 1 年前
    3
  • pdf文档 监控Apache Flink应用程序(入门)

    org/projects/flink/flink-docs-release-1.7/monitoring/metrics.html#latency-tracking 2. During periods of high load or during recovery, events might spend some time in the message queue until they are processed by is starting to degrade among the first metrics you want to look at are memory consumption and CPU load of your Task- & JobManager JVMs. 4.13.1 Memory Flink reports the usage of Heap, NonHeap, Direct 13.2 CPU Besides memory, you should also monitor the CPU load of the TaskManagers. If your TaskManagers are constantly under very high load, you might be able to improve the overall performance by decreasing
    0 码力 | 23 页 | 148.62 KB | 1 年前
    3
  • pdf文档 Fault-tolerance demo & reconfiguration - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    Vasiliki Kalavri | Boston University 2020 • Change parallelism • scale out to process increased load • scale in to save resources • Fix bugs or change business logic • Optimize execution plan keep duration short • minimize performance disruption, e.g. latency spikes • avoid introducing load imbalance • Resource management • utilization, isolation • Automation • continuous monitoring Sequential read pattern • Tasks read unnecessary data and the distributed file system receives high load of read requests • Track the state location for each key in the checkpoint, so that tasks locate
    0 码力 | 41 页 | 4.09 MB | 1 年前
    3
  • pdf文档 Graph streaming algorithms - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    Vasiliki Kalavri | Boston University 2020 1. Load: read the graph from disk and partition it in memory 10 ??? Vasiliki Kalavri | Boston University 2020 1. Load: read the graph from disk and partition University 2020 1. Load: read the graph from disk and partition it in memory 2. Compute: read and mutate the graph state 11 ??? Vasiliki Kalavri | Boston University 2020 1. Load: read the graph from
    0 码力 | 72 页 | 7.77 MB | 1 年前
    3
  • pdf文档 Elasticity and state migration: Part I - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    Kalavri | Boston University 2020 Pause-and-restart state migration 32 re-configure state load state load buffer incoming records block channels and upstream operators • State is scoped to a Kalavri | Boston University 2020 Pause-and-restart state migration 32 re-configure state load state load buffer incoming records block channels and upstream operators All affected operators
    0 码力 | 93 页 | 2.42 MB | 1 年前
    3
  • pdf文档 Course introduction - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    summarizing, and analyzing data streams Systems Algorithms Architecture and design Scheduling and load management Scalability and elasticity Fault-tolerance and guarantees State management Operator their first and last cell towers Examples: • Location-based services • Monitor cell tower load • Continuously maintain call signatures for fraud detection • call frequency • top-K cell towers
    0 码力 | 34 页 | 2.53 MB | 1 年前
    3
  • pdf文档 Stream processing fundamentals - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    historical recent and historical ETL process complex fast and light-weight ETL: Extract-Transform-Load
 e.g. unzipping compressed files, data cleaning and standardization 6 Vasiliki Kalavri | Boston pipeline, task, data State limited, in-memory partitioned, virtually unlimited, persisted to backends Load management shedding backpressure, elasticity Fault tolerance limited support, high availability full
    0 码力 | 45 页 | 1.22 MB | 1 年前
    3
共 12 条
  • 1
  • 2
前往
页
相关搜索词
FlowcontrolandloadsheddingCS591K1DataStreamProcessingAnalyticsSpring2020StreamingoptimizationsingestionpubsubsystemsSkewmitigation监控ApacheFlink应用程序应用程序入门FaulttolerancedemoreconfigurationGraphstreamingalgorithmsElasticitystatemigrationPartCourseintroductionprocessingfundamentals
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩