积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部云计算&大数据(11)Apache Flink(11)

语言

全部英语(11)

格式

全部PDF文档 PDF(11)
 
本次搜索耗时 0.024 秒,为您找到相关结果约 11 个.
  • 全部
  • 云计算&大数据
  • Apache Flink
  • 全部
  • 英语
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 PyFlink 1.15 Documentation

    import udf # create a general Python UDF @udf(result_type=DataTypes.BIGINT()) def plus_one(i): return i + 1 table.select(plus_one(col('id'))).to_pandas() 1.1. Getting Started 17 pyflink-docs, Release release-1 @udf(result_type=DataTypes.BIGINT(), func_type='pandas') def pandas_plus_one(series): return series + 1 table.select(pandas_plus_one(col('id'))).to_pandas() /Users/duanchen/sourcecode/flink/flink-python/dev/ use the Python function in SQL API table_env.create_temporary_function("plus_one", plus_one) table_env.sql_query("SELECT plus_one(id) FROM {}".format(table)).to_pandas() Another example is UDFs used
    0 码力 | 36 页 | 266.77 KB | 1 年前
    3
  • pdf文档 PyFlink 1.16 Documentation

    import udf # create a general Python UDF @udf(result_type=DataTypes.BIGINT()) def plus_one(i): return i + 1 table.select(plus_one(col('id'))).to_pandas() 1.1. Getting Started 17 pyflink-docs, Release release-1 @udf(result_type=DataTypes.BIGINT(), func_type='pandas') def pandas_plus_one(series): return series + 1 table.select(pandas_plus_one(col('id'))).to_pandas() /Users/duanchen/sourcecode/flink/flink-python/dev/ use the Python function in SQL API table_env.create_temporary_function("plus_one", plus_one) table_env.sql_query("SELECT plus_one(id) FROM {}".format(table)).to_pandas() Another example is UDFs used
    0 码力 | 36 页 | 266.80 KB | 1 年前
    3
  • pdf文档 Filtering and sampling streams - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    stream, we select a stream element i with probability 10%. • We can use a random generator that produces an integer ri between 0 and 9. We then select an input element i if ri=0. 8 Q: How many stream, we select a stream element i with probability 10%. • We can use a random generator that produces an integer ri between 0 and 9. We then select an input element i if ri=0. 8 Will this approach fixed-size sample of the stream so far? At all times, we want the following property to hold: an element is in S with probability s/n, where n is the total number of stream elements seen so far. ??? Vasiliki
    0 码力 | 74 页 | 1.06 MB | 1 年前
    3
  • pdf文档 Cardinality and frequency estimation - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    University 2020 Let h be a hash function that maps each stream element into M = log2N bits, where N is the domain of input elements: For each element x, let rank(x) be the number of 0s in the end of h(x): University 2020 10 We split the input stream into m = 2p sub-streams S0, S1, …, Sm-1 For every element x, we compute h(x) and use the p first bits of the M-bit hash value to select a sub-stream and the University 2020 10 We split the input stream into m = 2p sub-streams S0, S1, …, Sm-1 For every element x, we compute h(x) and use the p first bits of the M-bit hash value to select a sub-stream and the
    0 码力 | 69 页 | 630.01 KB | 1 年前
    3
  • pdf文档 Scalable Stream Processing - Spark Streaming and Flink

    normal Spark RDDs. 20 / 79 Transformations (2/4) ▶ map • Returns a new DStream by passing each element of the source DStream through a given function. ▶ flatMap • Similar to map, but each input item func returns true. 21 / 79 Transformations (2/4) ▶ map • Returns a new DStream by passing each element of the source DStream through a given function. ▶ flatMap • Similar to map, but each input item func returns true. 21 / 79 Transformations (2/4) ▶ map • Returns a new DStream by passing each element of the source DStream through a given function. ▶ flatMap • Similar to map, but each input item
    0 码力 | 113 页 | 1.22 MB | 1 年前
    3
  • pdf文档 Windows and triggers - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    University 2020 Time-based window assigners for the most common windowing use cases: • They assign an element based on its event-time timestamp or the current processing time to windows. • Time windows (processing or event) time passes the end of the window. • A window is created when the first element is assigned to it. Flink will never evaluate empty windows! Flink’s built-in window assigners performed on the elements of a window • Incremental aggregation functions are applied when an element is added to a window: • They maintain a single value as window state and eventually emit the
    0 码力 | 35 页 | 444.84 KB | 1 年前
    3
  • pdf文档 High-availability, recovery semantics, and guarantees - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    if true, the element is probably in the set if false, it definitely isn’t Vasiliki Kalavri | Boston University 2020 21 http://streamingbook.net/fig/5-5 Bloom filter: if true, the element is probably Kalavri | Boston University 2020 21 http://streamingbook.net/fig/5-5 Bloom filter: if true, the element is probably in the set if false, it definitely isn’t Separate bloom filters for every 10-minute Kalavri | Boston University 2020 21 http://streamingbook.net/fig/5-5 Bloom filter: if true, the element is probably in the set if false, it definitely isn’t Separate bloom filters for every 10-minute
    0 码力 | 49 页 | 2.08 MB | 1 年前
    3
  • pdf文档 Streaming languages and operator semantics - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    relation R contains a stream element whenever tuple s is in R(τ) − R(τ − 1). • Dstream (for “delete stream”) applied to relation R contains a stream element whenever tuple s is in R(τ R(τ − 1) − R(τ). • Rstream (for “relation stream”) applied to relation R contains a stream element whenever tuple s is in R at time τ. 6 Vasiliki Kalavri | Boston University 2020 Imperative statement groups: • INITIALIZE: initialized local state. • ITERATE: update state based on new element and current state. • TERMINATE: produce the result. Note that it is allowed to define and maintain
    0 码力 | 53 页 | 532.37 KB | 1 年前
    3
  • pdf文档 Skew mitigation - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    e.g., if ε=0.2, w=5 (5 items per window) • wcur: the current window id • We keep a list D of element frequencies and their maximum associated error. • Once a window fills up, we remove infrequent each element x in wcur: if x ∈ D, increase its frequency, fx = fx +1 else insert with frequency fx = 1 and error εx = wcur - 1 N = N + 1 Delete step Iterate over D and remove every element x with
    0 码力 | 31 页 | 1.47 MB | 1 年前
    3
  • pdf文档 Streaming optimizations - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    input elements • a map operator has a selectivity of 1, i.e. it produces one output element for each input element it processes • an operator that tokenizes sentences into words has selectivity > 1
    0 码力 | 54 页 | 2.83 MB | 1 年前
    3
共 11 条
  • 1
  • 2
前往
页
相关搜索词
PyFlink1.15Documentation1.16FilteringandsamplingstreamsCS591K1DataStreamProcessingAnalyticsSpring2020CardinalityfrequencyestimationScalableSparkStreamingWindowstriggersHighavailabilityrecoverysemanticsguaranteeslanguagesoperatorSkewmitigationoptimizations
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩