积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部数据库(16)Greenplum(16)

语言

全部中文(简体)(16)

格式

全部PDF文档 PDF(16)
 
本次搜索耗时 0.030 秒,为您找到相关结果约 16 个.
  • 全部
  • 数据库
  • Greenplum
  • 全部
  • 中文(简体)
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 Greenplum资源管理器

    2017 年象行中国(杭州 站)第一期 Greenplum资源管理器 姚珂男/Pivotal kyao@pivotal.io 2017 年象行中国(杭州 站)第一期 Agenda • Greenplum数据库 • Resource Queue • Resource Group 2017 年象行中国(杭州 站)第一期 Greenplum数据库 • 基于PostgreSQL • 分布式 corruption => PANIC 2017 年象行中国(杭州 站)第一期 Resource Queue • Cost is tricky – 没有明确的定义 – 不同优化器不一致 – 优化器不能被纳入资源管理器 2017 年象行中国(杭州 站)第一期 Resource Queue • Priority is rough – 不能精确控制CPU – CHECK_FOR_INTERRUPTS – Resource Queue • Memory – Chaotic – 没有严格资源隔离 – 第三方库的malloc 2017 年象行中国(杭州 站)第一期 Resource Group • SQL语句并发控制 => 事务并发控制 • 基于cost的并发控制 • 基于优先级的CPU控制 => 精确CPU比例 • 内存控制 => 严格资源隔离 2017 年象行中国(杭州 站)第一期 Running Example
    0 码力 | 21 页 | 756.29 KB | 1 年前
    3
  • pdf文档 Greenplum Database 管理员指南 6.2.1

    .................... - 45 - 第六章:资源管理 .................................................................................................................... - 46 - 使用资源组................................ ........................................ - 46 - 资源组基于角色或基于外部组件 ............................................................................ - 47 - 资源组的属性 ............................................ ........................... - 48 - 配置与使用资源组 .................................................................................................... - 57 - 监控资源组状态 ......................................
    0 码力 | 416 页 | 6.08 MB | 1 年前
    3
  • pdf文档 Greenplum on Kubernetes 容器化MPP数据库

    AGENDA 云数据库背景 云数据库实现方案 Greenplum on Kubernetes Greenplum Operator 总结 云数据库背景 云数据库背景 ● 资源变化 ○ 本地资源 → 云 ○ 静态资源 → 弹性需求 ● 数据变化 ○ 内部数据 → 多数据源 ○ 数据规模 → 不易预测 ○ 数据格式 → 半结构化/无模式 ○ 数据隔离 → 数据共享 ● 云数据库市场巨大 云数据库市场巨大 ● 云数据库增速巨大 ● DBasS的需求 ● 跨云的需求 云数据库实现方案 云数据库需求 ● DBasS ○ 自动化运维 ○ 自动化调优 ● 弹性资源管理 ○ 存储资源 ○ 计算资源 ● 安全 ○ 用户数据 ○ 临时文件 ○ 网络传输 ○ 权限控制 ● 跨云 ○ 公有云 ○ 私有云 云数据库实现方案 ● 全新数据库 ○ Snowflake ● Instance Segment 5 (Mirror) 容器化Greenplum ? + = 容器化Greenplum ● 容器粒度 ○ Segment主机 VS. Segment实例 ● 容器资源分配 ○ CPU ○ 内存 ○ 磁盘 ● 容器间网络互联 ○ 本机网络 ○ 跨机网络 ● 容器化Greenplum部署策略 ○ Master部署策略 ○ Primary Segment部署策略
    0 码力 | 33 页 | 1.93 MB | 1 年前
    3
  • pdf文档 Greenplum 精粹文集

    车轮一样,经过几十年磨砺,数据库引擎技术已经非常成熟,大可 不必去重新设计开发,而且把数据库底层交给其它专业化组织来开 发(对应到 Postgresql 就是社区),还可充分利用到社区的源源不 断的创新能力和资源,让产品保持持续旺盛的生命力。 这也是我们在用户选型时,通常建议用户考察一下底层的技术支撑 是不是有好的组织和社区支持的原因,如果缺乏这方面的有力支持 或独自闭门造轮,那就有理由为那个车的前途感到担忧,一个简单 ·行、列混合存储 ·数据表多级分区 ·Bitmap 索引 ·Hadoop 外部表 ·Gptext 全文检索 ·并行查询计划优化器和 Orca 优化器 ·Primary/Mirror 镜像保护机制 ·资源队列管理 ·WEB/Brower 监控 Big Date2.indd 7 16-11-22 下午3:38 8 3. Greenplum 的艺术 -- Parallel Everything 都运转起来,无共享架构将这种并行处理发挥到极致。 相比一些其它传统数据仓库的 Sharedisk 架构,后者最大瓶颈就是在 IO 吞吐上,在大规模数据处理时,IO 无法及时 feed 数据给到 CPU, CPU 资源处于 wait 空转状态,无法充分利用系统资源,导致 SQL 效 率低下: 一台内置 16 块 SAS 盘的 X86 服务器,每秒的 IO 数据扫描性能约在 2000MB/s 左右,可以想象,20 台这样的服务器构成的机群
    0 码力 | 64 页 | 2.73 MB | 1 年前
    3
  • pdf文档 Pivotal Greenplum 最佳实践分享

    发起一个请求时,每个Instance都将FORK子进 程并行工作; • 对于并发请求高、面向于复杂的灵活查询的系 统,建议每个Segment配置4个或以下Instance, 这样来保证每个Instance所需资源,保证系统 系统运行稳定性,例如,减少OOM发生的概率; • 对于以批处理、串行工作为主的系统,可以配 置到8个Instance,这样可以尽可能的发挥每个 CPU的处理性能。 Master 优化查询以减少内存的消耗  在资源队列中降低查询的并发数  降低GP集群中单节点的Segment Instance数量  增加机器的内存  检查gp_vmem_protect_limit 参数, 确保其不要超过安全的最大值  在会话层面降低statement_mem 参数的设定值  在数据库层面降低statement_mem参数的设定值  在资源队列中限制内存使用量 physical_memory_in_MB ) / #_of_primary_segments X =1~1.5,建议采用1,避免过多占用OS的内存.  调整资源队列中MEMORY_LIMIT的总和小于 gp_vmem_protect_limit *0.9.  调整资源中的Active_statement和Max_cost,CCB的参考值如下: – Max_Cost :30亿 – Active_Statements:30
    0 码力 | 41 页 | 1.42 MB | 1 年前
    3
  • pdf文档 Greenplum 6: 混合负载的理想数据平台

    OLTP数据库 OLAP数据仓库 ■ 实时性 ■ 数据同步复杂性 ■ 应用复杂性 HTAP HTAP = ? ■ 卓越的OLAP特性 ■ 出色的OLTP特性 ■ 多态存储 ■ 有效的并发和资源管理 OLTP-OLAP独立部署 OLTP数据库 OLAP数据仓库 ■ 实时性 ■ 数据同步复杂性 ■ 应用复杂性 43 Pivotal Confidential–Internal Use 9月 8月 用户自定义数据存储格式 并发管理 ■ pgbouncer ■ 资源组(resource group) create resource group rg1 (cpu_rate_limit=20, memory_limit=10, concurrency=5) 资源管理:CPU使用受限和超限 资源管理:CPU,短查询延迟 ■ 更稳定延迟,CPUSET特性:create resource resource group rg1 (cpu_set=’4,5’, memory_limit=10, concurrency=5) 资源管理:内存 ■ 隔离 ○ segment级 ○ 资源组 ○ 查询 ■ 共享 ○ 全局segment级 ○ 资源组内 资源管理:磁盘配额 SELCT diskquota.set_schema_quota ('s1', '1 MB'); SELECT
    0 码力 | 52 页 | 4.48 MB | 1 年前
    3
  • pdf文档 Pivotal Greenplum 5: 新一代数据平台

    .......................................................................................7 Greenplum资源组和Workload Manager ................................................................................ 的功能逐渐增多,传统查询优化器能够在性能上胜出 的情况将变得极为罕见。4 Greenplum资源组和Workload Manager 管理并发性能和用户资源分配是 Greenplum 的主要功能之一。这一版本不仅增强了 Workload Manager 的功能,还引入了 一种管理数据库查询的新方法——资源组,可让数据库管理员更好地控制用户活动,尤其是在 CPU 和内存管理方面。资 源组一经定义, 源组一经定义,便会将所有用户活动纳入管理范围,包括超级用户。某个超级用户执行的所有语句都会路由至一个默认资 源组,管理员可以根据需要调整该资源组,增加或减少其系统资源。如果队列中没有可用于某个查询的空位,或者内存不 足以运行该查询,它会自动排队,直到有能够成功执行的资源为止。 1. Marshall Presser,Data Warehousing with Greenplum:Open Source Massively
    0 码力 | 9 页 | 690.33 KB | 1 年前
    3
  • pdf文档 并行不悖- OLAP 在互联网公司的实践与思考

    公司IDC_02机房Greenplum体系 Ø 公司IDC_03机房Greenplum体系 • 服务器资源 Ø 三大Greenplum集群,共用 422 个postgresql实例 Ø 实例分布成为 28 个Greenplum集群或postgresql单实例 • 服务器资源 Ø 三大Greenplum集群,共使用 51 台服务器资源 Ø 12台虚拟机,39台物理机 17 Greenplum现状说明 三大Greenplum集群定位分类 环境创建与部署 • 部署流程 Ø 规划部署方案 Ø 准备硬件资源 Ø 修改系统参数 Ø 安装 Greenplum 软件 / postgresql软件 Ø 初始化实例 Ø 修改实例参数文件 Ø 初始化业务所需库表环境、用户环境 Ø 加载数据 Ø 业务程序访问 23 Greenplum运维体系 环境创建与部署 • 部署注意点 Ø 资源要充足(ETL,管理节点,数据节点,数据集市) Ø 万兆网络 一 Greenplum开发规范 五 Greenplum运维体系 四 Greenplum扩展规划 六 34 Greenplum开发规范 不规范容易出现的问题 • GP架构易出现问题 Ø 资源不足 Ø 连接、语句执行失败 Ø 多任务冲突 • 库表使用易出现问题 Ø 表定义过大 Ø 表类型单一 Ø 表的散列键不恰当 Ø 分区表的分区键性能不佳 • 加载易出现问题 Ø 文件加载出现特殊字符
    0 码力 | 43 页 | 9.66 MB | 1 年前
    3
  • pdf文档 Greenplum数据库架构分析及5.x新功能分享

    Use Only 调度器 本地存储 主节点Segment 系统表 分布式事务 Interconnect 执行器 解析器 发送查询计划给各 个Segments 分配处理查询需要 的集群资源,收集 并返回结果给客户 端 主节点 Segment 实例 本地事务 执行器 系统表 本地存储 Segment 主机 Segment 实例 Local TM 执行器Executor nal Use Only 执行器 本地存储 主节点Segment 系统表 分布式事务 Interconnect 解析器 发送查询计划给各 个Segments 分配处理查询需要 的集群资源,收集 并返回结果给客户 端 主节点 Segment 实例 本地事务 执行器 系统表 本地存储 Segment 主机 Segment 实例 Local TM 执行器Executor Only Interconnect 本地存储 主节点Segment 系统表 分布式事务 Interconnect 解析器 发送查询计划给各 个Segments 分配处理查询需要 的集群资源,收集 并返回结果给客户 端 主节点 Segment 实例 本地事务 执行器 系统表 本地存储 Segment 主机 Segment 实例 Local TM 执行器Executor
    0 码力 | 44 页 | 8.35 MB | 1 年前
    3
  • pdf文档 Greenplum分布式事务和两阶段提交协议

    一阶段提交不能保证 分布式事务的原子性 23 两阶段提交协议 ● Jim Gray等研究者在1978年提出了两阶段提交协议,用于保证分布式事务提交的原子性 ● 可以用于单机集中式系统,由事务管理器协调多个资源管理器;也可以用于分布式系 统,由一个全局的 事务管理器协调各个子系统的局部事务管理器完成两阶段提交 ● 广泛应用于商业分布式数据库 ❏ A节点是事务的协调者(coordinator) ❏ 日志落盘 协调者 参与者 发送prepare消息 ready 发送commit/abort消息 ack 阶段2 阶段1 25 2PC同样可以应用在单机系统上 协调者 资源管理器1 资源管理器2 资源管理器3 日志1 日志2 日志3 PREPARE / COMMIT / ROLLBACK 命令 参与者 读写操作 26 两阶段提交协议需要处理的故障 1. 参与者故障
    0 码力 | 42 页 | 2.12 MB | 1 年前
    3
共 16 条
  • 1
  • 2
前往
页
相关搜索词
Greenplum资源管理资源管理Database管理员指南onKubernetes容器MPP数据据库数据库精粹文集Pivotal最佳实践分享混合负载理想平台一代新一代并行并行不悖OLAP互联联网互联网公司思考架构分析功能分布布式分布式事务阶段提交协议
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩