Greenplum 精粹文集提供强大的并行数据计算性能和海量数据管理能力。这个能力主要指 的是并行计算能力,是对大任务、复杂任务的快速高效计算,但如果 你指望 MPP 并行数据库能够像 OLTP 数据库一样,在极短的时间处 理大量的并发小任务,这个并非 MPP 数据库所长。请牢记,并行和 并发是两个完全不同的概念,MPP 数据库是为了解决大问题而设计的 并行计算技术,而不是大量的小问题的高并发请求。 再通俗点说,Greenplum 没有统计信息,不能做基于 cost-base 的优化;MPP 数据库可以利用统计信息很好地进行并行计算优化。例如,MPP 对 于不同分布的数据可以在计算中基于 Cost 动态决定最优执行路径, 如采用重分布还是小表广播。 Big Date2.indd 13 16-11-22 下午3:38 14 ·Reduce 效率对比: 对比于 MPP 数据库的 SQL 执行器 -executor,Mapreduce 技术支持;MPP 数据库可以基于 COST 来自动选择 Hash join、Merger join 和 Nestloop join, 甚 至 可 以 在 Hash join 通 过 COST 选择小表做 Hash,在 NestloopJoin 中选择 index 提高 join 性 能等等。 MPP 数据库对于 Aggregation(聚合)提供 Multiple-agg、Group- agg、sort-agg0 码力 | 64 页 | 2.73 MB | 1 年前3
Greenplum Database 管理员指南 6.2.1,我们跟随着 Greenplum 的 成长,见证了 Greenplum 从闭源到开源的成长历程,一路给 Greenplum 做各种补丁 脚本,也看到了 Greenplum 的大幅进步,甚至我们以前的小技巧也不再需要,持续的 进步,带来的是生态的蓬勃发展。 Greenplum Database 管理员指南 V6.2.1 版权所有:Esena(陈淼 +86 18616691889) 编写:陈淼 ......................................................................................... - 364 - 小版本升级................................................................................................ ......................................................................................... - 364 - 小版本升级步骤 .............................................................................................0 码力 | 416 页 | 6.08 MB | 1 年前3
并行不悖- OLAP 在互联网公司的实践与思考“未来”的数据 —— 趋势分析 4 数据仓库体系架构 业务数据与数据特点 • 现在的数据 —— OLTP Ø实时,在线系统,客户使用 Ø事务小,频率高,并发高 • 过去的数据 —— OLAP Ø非实时(T+1,或小时级),离线系统,分析决策 Ø事务大,频率相对小,并发低 • 未来的数据 —— 趋势分析 Ø非实时,离线+在线流系统,趋势分析 Ø算法分析,持续计算 5 数据仓库体系架构 OLAP场景举例 分区表的分区键性能不佳 • 加载易出现问题 Ø 文件加载出现特殊字符 Ø 数据校验标准问题 35 Greenplum开发规范 业务库表设计规范 • GP中表的范围 Ø 最大时间为年表 Ø 数据量小,可用单表 • 多种表类型 Ø 堆表 (选好常用列作为三列键) Ø 分区表 (按照 yyyymmdd 分区,建议都添加 datenum int8) Ø append表 Ø 列存储表 Ø 多种表类型结合0 码力 | 43 页 | 9.66 MB | 1 年前3
Greenplum 排序算法ot ● 分割:重新排序数组,所有比基准元素小的元素排放到基准元素之前;所有比基 准元素大的元素排放到基准元素之后。分割完成后,我们完成了对基准元素的 排序,即基准元素在数组中的位置不再改变 ● 递归排序子序列:递归地将小于基准元素的子序列和大于基准元素的子序列分 别进行排序 快速排序 8 ● 快速排序算法每次选取一个基准元素,将比基准元素小的排到基准元素左边, 比基准元素大的排到基准元 6 8 9 5 9 2 1 3 6 8 20 ● 堆排序算法 堆排序 21 ● 归并排序分为两个阶段,阶段一是分割阶段,将原始待排序数据分成若干个顺 串。阶段二是合并阶段,将所有小顺串合并成一个包含所有数据的大顺串 外排序之归并排序 1 7 4 8 1 7 4 8 1 4 7 8 待排序数据 分割阶段 合并阶段 22 ● 问题一:分割阶段只需要顺序扫描一次外存,最简单的策略是读取外存数据,加0 码力 | 52 页 | 2.05 MB | 1 年前3
Pivotal Greenplum 最佳实践分享物理模型经验分享 物理模型对于系统性能有很大影响,因此需要我们特别关注。 以下来自于在某大型银行的使用经验: 行存储和列存储: • 避免过多使用列存储的原因是防止小档数过多。 • 列存储能够提升查询性能,对于更新和全字段类操作性能反而会下降 • 对于少数频繁查询的宽表,例如交易表、帐户表、客户表等采用列存储,其它表采用行存储 数据压缩: • 在金 – Merge join(排序关联) 大多数关联都是Hash关联,关联是小表被Hash到内存中,如果涉及数据表规模较大,内存不足时, GPDB将会生成临时文件,这些档会放在segment的实例目录下pgsql_tmp目录下,GPDB建议保留 30%左右的空间作为临时空间 避免小表Left Join大表 修改为先Inner Join再Left Join的方式,避免大表被Hash0 码力 | 41 页 | 1.42 MB | 1 年前3
Brin Index主Greenplum 7中的理论与实现VMware, Inc. Brin的优势和劣势 优势: 占用空间小 创建快 劣势: 只有在数据具有一定分布特点时才有用 Confidential │ ©2021 VMware, Inc. Brin的体积 Brin tuple: 20bytes Block Range: 8K * 20 = 160K Brin比Heap小8000倍 1 TB的Heap表只需要125M的Brin [10 码力 | 32 页 | 1.04 MB | 1 年前3
Greenplum 新一代数据管理和数据分析解决方案与 ORACLE系统加载耗时比较如下: 文件名 文件描述 ORACLE GREENPLUM GP提升 倍数 Staging 加载时间 文 件 大 小 记录条数 Staging 加 载 时 间 文 件 大 小 记录条数 SDFISM ST 活期存款账户信息表 38分 1.29G 1156932 4 46秒 1.39G 11621418 50x SDFISM SC0 码力 | 45 页 | 2.07 MB | 1 年前3
Greenplum 6新特性:
在线扩容工具GPexpand剖析可以并行初始化每个新节点 – 并行执行expand表 ▪ 对表执行expand之后要更新gpexpand.status_detail表的状态 ▪ Greenplum 5及之前的版本对表的更新操作是串行的,所以大量小表做expand会在 更新状态表时遇到瓶颈 ▪ Greenplum 6中因为全局死锁检测的引入可以对heap表做并行更新 改进与实现 • 扩容期间对查询的影响 – 新增节点阶段无法修改catalog0 码力 | 37 页 | 1.12 MB | 1 年前3
Greenplum 编译安装和调试named psutil 原因是 psutil 这个python包没有安装,但是使用 python 验证,发现已经安装了。 而使用 ssh 验证发现使用了不同路径的 python。 2.2.8 小技巧 Greenplum使用 Bash 和 Python 脚本初始化集群和管理集群。可以通过在合适的地方设置日志或 者调试信息可以帮助分析某些难以解决的问题。 ● 集群初始化工具 gpinitsystem0 码力 | 15 页 | 2.07 MB | 1 年前3
完全兼容欧拉开源操作系统的 HTAP 数据平台 Greenplum期间不会中断正在运行的所有查询;另外采用了 Jump Consistent Hash 的一致性哈希算法, 在数据重分布期间,每个旧节点仅移动出需要移动的数据到新节点上, 得益于创新的分布式死锁检测, 对于大量小表做并行重分布性能提升非常明显。 Greenplum VACUUM 提升 将在 Greenplum 7 中实现此功能,能够做到: 1 https://arxiv.org/pdf/21030 码力 | 17 页 | 2.04 MB | 1 年前3
共 10 条
- 1













