pandas: powerful Python data analysis toolkit - 0.21.1it is superfluous when SQLAlchemy is not installed (GH13611) • Deprecated read_csv keywords: – compact_ints and use_unsigned have been deprecated and will be removed in a future version (GH13320) – buffer_lines S3 (GH11070, GH11072). • In pd.read_csv, recognize s3n:// and s3a:// URLs as designating S3 file storage (GH11070, GH11071). • Read CSV files from AWS S3 incrementally, instead of first downloading the (GH11070, GH11073) • pd.read_csv is now able to infer compression type for files read from AWS S3 storage (GH11070, GH11074). 1.12.2 Backwards incompatible API changes 1.12.2.1 Changes to sorting API0 码力 | 2207 页 | 8.59 MB | 1 年前3
pandas: powerful Python data analysis toolkit - 0.19.0it is superfluous when SQLAlchemy is not installed (GH13611) • Deprecated read_csv keywords: – compact_ints and use_unsigned have been deprecated and will be removed in a future version (GH13320) – buffer_lines S3 (GH11070, GH11072). • In pd.read_csv, recognize s3n:// and s3a:// URLs as designating S3 file storage (GH11070, GH11071). • Read CSV files from AWS S3 incrementally, instead of first downloading the (GH11070, GH11073) • pd.read_csv is now able to infer compression type for files read from AWS S3 storage (GH11070, GH11074). Backwards incompatible API changes Changes to sorting API The sorting API0 码力 | 1937 页 | 12.03 MB | 1 年前3
pandas: powerful Python data analysis toolkit - 0.19.1it is superfluous when SQLAlchemy is not installed (GH13611) • Deprecated read_csv keywords: – compact_ints and use_unsigned have been deprecated and will be removed in a future version (GH13320) – buffer_lines S3 (GH11070, GH11072). • In pd.read_csv, recognize s3n:// and s3a:// URLs as designating S3 file storage (GH11070, GH11071). • Read CSV files from AWS S3 incrementally, instead of first downloading the (GH11070, GH11073) • pd.read_csv is now able to infer compression type for files read from AWS S3 storage (GH11070, GH11074). Backwards incompatible API changes Changes to sorting API The sorting API0 码力 | 1943 页 | 12.06 MB | 1 年前3
pandas: powerful Python data analysis toolkit - 0.20.3it is superfluous when SQLAlchemy is not installed (GH13611) • Deprecated read_csv keywords: – compact_ints and use_unsigned have been deprecated and will be removed in a future version (GH13320) – buffer_lines S3 (GH11070, GH11072). • In pd.read_csv, recognize s3n:// and s3a:// URLs as designating S3 file storage (GH11070, GH11071). • Read CSV files from AWS S3 incrementally, instead of first downloading the (GH11070, GH11073) • pd.read_csv is now able to infer compression type for files read from AWS S3 storage (GH11070, GH11074). 1.10.2 Backwards incompatible API changes 1.10.2.1 Changes to sorting API0 码力 | 2045 页 | 9.18 MB | 1 年前3
pandas: powerful Python data analysis toolkit - 0.20.2it is superfluous when SQLAlchemy is not installed (GH13611) • Deprecated read_csv keywords: – compact_ints and use_unsigned have been deprecated and will be removed in a future version (GH13320) – buffer_lines S3 (GH11070, GH11072). • In pd.read_csv, recognize s3n:// and s3a:// URLs as designating S3 file storage (GH11070, GH11071). • Read CSV files from AWS S3 incrementally, instead of first downloading the (GH11070, GH11073) • pd.read_csv is now able to infer compression type for files read from AWS S3 storage (GH11070, GH11074). 1.9.2 Backwards incompatible API changes 1.9.2.1 Changes to sorting API The0 码力 | 1907 页 | 7.83 MB | 1 年前3
pandas: powerful Python data analysis toolkit - 0.13.1lightweight portable binary format. See the docs Warning: Since this is an EXPERIMENTAL LIBRARY, the storage format may not be stable until a future release. 28 Chapter 1. What’s New pandas: powerful Python Release 0.13.1 • SciPy: miscellaneous statistical functions • PyTables: necessary for HDF5-based storage • matplotlib: for plotting • statsmodels – Needed for parts of pandas.stats • openpyxl, xlrd/xlwt last business day of the year), or “roll” dates forward or backward pandas provides a relatively compact and self-contained set of tools for performing the above tasks. Create a range of dates: # 72 hours0 码力 | 1219 页 | 4.81 MB | 1 年前3
pandas: powerful Python data analysis toolkit - 0.12Release 0.12.0 • SciPy: miscellaneous statistical functions • PyTables: necessary for HDF5-based storage • matplotlib: for plotting • statsmodels – Needed for parts of pandas.stats • openpyxl, xlrd/xlwt last business day of the year), or “roll” dates forward or backward pandas provides a relatively compact and self-contained set of tools for performing the above tasks. Create a range of dates: # 72 hours space. These are in terms of the total number of rows in a table. # this is effectively what the storage of a Panel looks like In [227]: wp.to_frame() Item1 Item2 major minor 2000-01-01 A -0.082240 00 码力 | 657 页 | 3.58 MB | 1 年前3
pandas: powerful Python data analysis toolkit - 0.14.0lightweight portable binary format. See the docs Warning: Since this is an EXPERIMENTAL LIBRARY, the storage format may not be stable until a future release. In [118]: df = DataFrame(np.random.rand(5,2),columns=list(’AB’)) Release 0.14.0 • SciPy: miscellaneous statistical functions • PyTables: necessary for HDF5-based storage • SQLAlchemy: for SQL database support. Version 0.8.1 or higher recommended. • matplotlib: for machine on which the file was created. Using a raw binary file format like this for general data storage is not recommended, as it is not cross platform. We recommended either HDF5 or msgpack, both of which0 码力 | 1349 页 | 7.67 MB | 1 年前3
pandas: powerful Python data analysis toolkit - 0.25blosc Compression for msgpack fastparquet 0.2.1 Parquet reading / writing gcsfs 0.2.2 Google Cloud Storage access html5lib HTML parser for read_html (see note) lxml 3.8.0 HTML parser for read_html (see {'filename': ['filename_01', 'filename_02'], .....: 'path': ["media/user_name/storage/folder_01/filename_01", .....: "media/user_name/storage/folder_02/filename_02"]} .....: In [127]: pd.set_option('display.max_colwidth' DataFrame(datafile) Out[128]: filename path 0 filename_01 media/user_name/storage/fo... 1 filename_02 media/user_name/storage/fo... In [129]: pd.set_option('display.max_colwidth', 100) In [130]: pd0 码力 | 698 页 | 4.91 MB | 1 年前3
pandas: powerful Python data analysis toolkit - 1.3.3Version Notes fsspec 0.7.4 Handling files aside from simple local and HTTP gcsfs 0.6.0 Google Cloud Storage access pandas-gbq 0.12.0 Google Big Query access s3fs 0.4.0 Amazon S3 access 1.4. Tutorials 11 ["filename_01", "filename_02"], .....: "path": [ .....: "media/user_name/storage/folder_01/filename_01", .....: "media/user_name/storage/folder_02/filename_02", .....: ], .....: } .....: In [128]: pd.set_option("display DataFrame(datafile) Out[129]: filename path 0 filename_01 media/user_name/storage/fo... 1 filename_02 media/user_name/storage/fo... In [130]: pd.set_option("display.max_colwidth", 100) In [131]: pd0 码力 | 3603 页 | 14.65 MB | 1 年前3
共 32 条
- 1
- 2
- 3
- 4













