积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部云计算&大数据(10)机器学习(10)

语言

全部英语(6)中文(简体)(4)

格式

全部PDF文档 PDF(10)
 
本次搜索耗时 0.069 秒,为您找到相关结果约 10 个.
  • 全部
  • 云计算&大数据
  • 机器学习
  • 全部
  • 英语
  • 中文(简体)
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 4 - Efficient Architectures

    stanford.edu/projects/glove 6 Mikolov, Tomas, Kai Chen, Greg Corrado, and Jeffrey Dean. "Efficient estimation of word representations in vector space." arXiv preprint arXiv:1301.3781 (2013). Figure 4-6: This Step 1: Vocabulary Creation In this step, we create a vocabulary of the top words10 (ordered by frequency) from the given training corpus. We would learn embeddings of dimensions each (where we can also
    0 码力 | 53 页 | 3.92 MB | 1 年前
    3
  • pdf文档 Lecture 4: Regularization and Bayesian Statistics

    satisfied Feng Li (SDU) Regularization and Bayesian Statistics September 20, 2023 11 / 25 Parameter Estimation in Probabilistic Models Assume data are generated via probabilistic model d ∼ p(d; θ) p(d; θ): Regularization and Bayesian Statistics September 20, 2023 12 / 25 Maximum Likelihood Estimation (MLE) Maximum Likelihood Estimation (MLE): Choose the parameter θ that maximizes the probability of the data, given parameter estimation θMLE = arg max θ ℓ(θ) = arg max θ m � i=1 log p(d(i); θ) Feng Li (SDU) Regularization and Bayesian Statistics September 20, 2023 13 / 25 Maximum-a-Posteriori Estimation (MAP)
    0 码力 | 25 页 | 185.30 KB | 1 年前
    3
  • pdf文档 Keras: 基于 Python 的深度学习库

    1(正样本)。 •(单词, 来自词汇表的随机单词),标签为 0(负样本)。 若要了解更多和 Skipgram 有关的知识,请参阅这份由 Mikolov 等人发表的经典论文:Efficient Estimation of Word Representations in Vector Space 参数 • sequence: 一个编码为单词索引(整数)列表的词序列(句子) 。如果使用一个 samp 中使用的采样分布生成: p(word) = (min(1, sqrt(word_frequency / sampling_factor) / (word_frequency / sampling_factor))) 我们假设单词频率遵循 Zipf 定律(s=1),来导出 frequency(rank) 的数值近似: frequency(rank) ~ 1/(rank * (log(rank) + gamma)
    0 码力 | 257 页 | 1.19 MB | 1 年前
    3
  • pdf文档 深度学习下的图像视频处理技术-沈小勇

    scale factor Arbitrary temporal frames Our Method 44 45 Data from Vid4 [Ce Liu et al.] Motion Estimation Our Method 46 ???????????????????????? ???????????? ????????????0 ???????????? ME ??????
    0 码力 | 121 页 | 37.75 MB | 1 年前
    3
  • pdf文档 动手学深度学习 v2.0

    至今仍用于解 决从保险计算到医疗诊断的许多问题。这些工具算法催生了自然科学中的一种实验方法——例如,电阻中电 流和电压的欧姆定律可以用线性模型完美地描述。 即使在中世纪,数学家对估计(estimation)也有敏锐的直觉。例如,雅各布·克贝尔 (1460–1533)18的几何学 书籍举例说明,通过平均16名成年男性的脚的长度,可以得出一英尺的长度。 图1.4.1: 估计一英尺的长度 图1 freqs = [freq for token, freq in vocab.token_freqs] d2l.plot(freqs, xlabel='token: x', ylabel='frequency: n(x)', xscale='log', yscale='log') 通过此图我们可以发现:词频以一种明确的方式迅速衰减。将前几个单词作为例外消除后,剩余的所有单词 大致遵循双对数坐 trigram_vocab.token_freqs] d2l.plot([freqs, bigram_freqs, trigram_freqs], xlabel='token: x', ylabel='frequency: n(x)', xscale='log', yscale='log', legend=['unigram', 'bigram', 'trigram']) 8.3. 语言模型和数据集 307
    0 码力 | 797 页 | 29.45 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 5 - Advanced Compression Techniques

    another equally sized range. It creates equal sized quantization ranges (bins), regardless of the frequency of data. Clustering helps solve that problem by adapting the allocation of precision to match the regions? Recall that huffman encoding does this by trying to create a huffman tree based on symbol frequency. As a result it comes up with a variable-length code, where a smaller length code is assigned to picked (orange dots). Notice that the centroids are densely distributed around the ranges where the frequency of x is high. How satisfying is that? You can rely on clustering to put its centroids where the
    0 码力 | 34 页 | 3.18 MB | 1 年前
    3
  • pdf文档 从推荐模型的基础特点看大规模推荐类深度学习系统的设计 袁镱

    Partitions for Memory-Efficient Recommendation Systems Twiiter [RecSys21] Model Size Reduction Using Frequency Based Double Hashing for Recommender Systems 9 千 万 key hash1(key) hash2(key) 千 万 业界⽅案:Double
    0 码力 | 22 页 | 6.76 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 6 - Advanced Learning Techniques - Technical Review

    (or for that matter any problem with sequential data), we can consider heuristics like vocabulary frequency (sequences with rare tokens are likely harder as shown in the language model task by Bengio et al
    0 码力 | 31 页 | 4.03 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 2 - Compression Techniques

    is Huffman Coding, where we assign unique strings of bits (codes) to the symbols based on their frequency in the data. More frequent symbols are assigned smaller codes, and less frequent symbols are assigned
    0 码力 | 33 页 | 1.96 MB | 1 年前
    3
  • pdf文档 【PyTorch深度学习-龙龙老师】-测试版202112

    通常可以假设?(?)符合已知的分布,比如?(0,1)。在?(?)已知的条件下,我们的目的 就是希望能学会生成概率模型?(?|?)。这里可以采用最大似然估计(Maximum Likelihood Estimation)方法:一个好的模型,应该拥有很大的概率生成真实的样本? ∈ ?。如果我们的 生成模型?(?|?)是用?来参数化,那么我们的神经网络的优化目标是: max ? ? (?) = ∫ ?(
    0 码力 | 439 页 | 29.91 MB | 1 年前
    3
共 10 条
  • 1
前往
页
相关搜索词
EfficientDeepLearningBookEDLChapterArchitecturesLectureRegularizationandBayesianStatisticsKeras基于Python深度学习图像视频处理技术沈小勇动手v2AdvancedCompressionTechniques推荐模型基础特点大规规模大规模系统设计TechnicalReviewPyTorch深度学习
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩