积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部云计算&大数据(17)机器学习(17)

语言

全部英语(12)中文(简体)(5)

格式

全部PDF文档 PDF(17)
 
本次搜索耗时 0.076 秒,为您找到相关结果约 17 个.
  • 全部
  • 云计算&大数据
  • 机器学习
  • 全部
  • 英语
  • 中文(简体)
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 【PyTorch深度学习-龙龙老师】-测试版202112

    tensorflow.keras import layers # 导入常见网络层类 然后创建 Softmax 层,并调用__call__方法完成前向计算: In [1]: x = tf.constant([2.,1.,0.1]) # 创建输入张量 layer = layers.Softmax(axis=-1) # 创建 Softmax 层 out = layer(x) # 调用 tensorflow.keras import layers # 导入常见网络层类 然后创建 Softmax 层,并调用__call__方法完成前向计算: In [1]: x = tf.constant([2.,1.,0.1]) # 创建输入张量 layer = layers.Softmax(axis=-1) # 创建 Softmax 层 out = layer(x) # 调用 tf.range(16)+1 x = tf.reshape(x,[1,4,4,1]) x = tf.cast(x, tf.float32) # 创建 3x3 卷积核 w = tf.constant([[-1,2,-3.],[4,-5,6],[-7,8,-9]]) w = tf.expand_dims(w,axis=2) w = tf.expand_dims(w,axis=3)
    0 码力 | 439 页 | 29.91 MB | 1 年前
    3
  • pdf文档 keras tutorial

    "tensorflow" } Here,  image_data_format represent the data format.  epsilon represents numeric constant. It is used to avoid DivideByZero error.  floatx represent the default data type float32. You add(Dense(512, activation='relu', input_shape=(784,), kernel_initializer=my_init)) Constant Generates a constant value (say, 5) specified by the user for all input data. Keras 29 initializers my_init = initializers.Constant(value=0) model.add(Dense(512, activation='relu', input_shape=(784,), kernel_initializer=my_init)) where, value represent the constant value RandomNormal Generates
    0 码力 | 98 页 | 1.57 MB | 1 年前
    3
  • pdf文档 Lecture Notes on Gaussian Discriminant Analysis, Naive

    assuming X is a random variable, we have f[E(X)] ≤ E[f(X)] (25) The equality holds if X is a constant. When f is a concave function, the Jensen’s inequality can be re-written as f( N � i=1 λixi) inequality, the equality holds if p(x(i), z(i); θ)/Qi(z(i)) is a constant. Assume p(x(i), z(i); θ) Qi(z(i)) = c (33) where c is a constant. Since � z(i)∈Ω Qi(z(i)) = 1, we have � z(i)∈Ω p(x(i), z(i);
    0 码力 | 19 页 | 238.80 KB | 1 年前
    3
  • pdf文档 Lecture 5: Gaussian Discriminant Analysis, Naive Bayes

    probability distribution on sample space S, we have f [E(X)] ≤ E[f (X)] The equality holds if X is a constant Feng Li (SDU) GDA, NB and EM September 27, 2023 89 / 122 Jensen’s inequality for Concave Function The equality in the Jensen’s inequality holds if p(x(i), z(i); θ) Qi(z(i)) = c where c is a constant Feng Li (SDU) GDA, NB and EM September 27, 2023 96 / 122 The EM Algorithm (Contd.) Tighten the The equality in the Jensen’s inequality holds if p(x(i), z(i); θ) Qi(z(i)) = c where c is a constant Since � z(i)∈Ω Qi(z(i)) = 1 we have � z(i)∈Ω p(x(i), z(i); θ) = c � z(i)∈Ω Qi(z) = c Feng Li
    0 码力 | 122 页 | 1.35 MB | 1 年前
    3
  • pdf文档 Keras: 基于 Python 的深度学习库

    Ones [source] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226 15.2.4 Constant [source] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226 15.2.5 RandomNormal • channel_shift_range: 浮点数。随机通道转换的范围。 • fill_mode: {“constant”, “nearest”, “reflect” or “wrap”} 之一。默认为 ‘nearest’。输入边界以外的 点根据给定的模式填充: – ‘constant’: kkkkkkkk|abcd|kkkkkkkk (cval=k) – ‘nearest’: aaaaaaaa|abcd|dddddddd abcddcba|abcd|dcbaabcd – ‘wrap’: abcdabcd|abcd|abcdabcd • cval: 浮点数或整数。用于边界之外的点的值,当 fill_mode = "constant" 时。 • horizontal_flip: 布尔值。随机水平翻转。 • vertical_flip: 布尔值。随机垂直翻转。 • rescale: 重缩放因子。默认为 None。如果是
    0 码力 | 257 页 | 1.19 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 1 - Introduction

    models where we cannot get a better quality while holding the latency constant, or we cannot get better latency while holding quality constant, we call just models pareto-optimal, and the set of these pareto-optimal
    0 码力 | 21 页 | 3.17 MB | 1 年前
    3
  • pdf文档 Lecture Notes on Support Vector Machine

    y(i)(ωT x(i) + b) ≥ γ∥ω∥, ∀i Note that scaling ω and b (e.g., by multiplying both ω and b by the same constant) does not change the hyperplane. Hence, we scale (ω, b) such that min i {y(i)(ωT x(i) + b)} = 1 problem is given min ω,b 1 2∥ω∥2 (30) s.t. y(i)(ωT x(i) + b) ≥ 1, ∀i (31) where we introduce a constant 1/2 so as to simplify our later derivations. 6 Theorem 4. The dual optimization problem of the
    0 码力 | 18 页 | 509.37 KB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 7 - Automation

    of the training set to create training and validation splits. You'll notice a baseline_accuracy constant in DATASET_PARAMS. It will be used later on to compute the initial reward signal. Next, we define which is responsible for spawning child networks, training them, and computing rewards. The layers constant defined in the class indicates the stacking order of the cells. Each element of layers is a pair
    0 码力 | 33 页 | 2.48 MB | 1 年前
    3
  • pdf文档 动手学深度学习 v2.0

    地依赖预定义的神经网 络层。 到目前为止,我们网络中的所有操作都对网络的激活值及网络的参数起作用。然而,有时我们可能希望合并 既不是上一层的结果也不是可更新参数的项,我们称之为常数参数(constant parameter)。例如,我们需要 一个计算函数 f(x, w) = c · w⊤x的层,其中x是输入,w是参数,c是某个在优化过程中没有更新的指定常量。 因此我们实现了一个FixedHiddenMLP类,如下所示: init_constant(m): if type(m) == nn.Linear: nn.init.constant_(m.weight, 1) nn.init.zeros_(m.bias) (continues on next page) 5.2. 参数管理 201 (continued from previous page) net.apply(init_constant) net[0] nn.Linear: nn.init.xavier_uniform_(m.weight) def init_42(m): if type(m) == nn.Linear: nn.init.constant_(m.weight, 42) net[0].apply(init_xavier) net[2].apply(init_42) print(net[0].weight.data[0])
    0 码力 | 797 页 | 29.45 MB | 1 年前
    3
  • pdf文档 PyTorch Release Notes

    (PyTorch commit: c60465873c5cf8f1a36da39f7875224d4c48d7ca), all batch norm multiplier is initialized as constant 1, instead of uniformly distributed between 0 and 1, as it was previously. This has caused accuracy (PyTorch commit: c60465873c5cf8f1a36da39f7875224d4c48d7ca), all batch norm multiplier is initialized as constant 1, instead of uniformly distributed between 0 and 1, as it was previously. This has caused accuracy (PyTorch commit: c60465873c5cf8f1a36da39f7875224d4c48d7ca), all batch norm multiplier is initialized as constant 1, instead of uniformly distributed between 0 and 1, as it was previously. This has caused accuracy
    0 码力 | 365 页 | 2.94 MB | 1 年前
    3
共 17 条
  • 1
  • 2
前往
页
相关搜索词
PyTorch深度学习kerastutorialLectureNotesonGaussianDiscriminantAnalysisNaiveBayesKeras基于Python深度学习EfficientDeepLearningBookEDLChapterIntroductionSupportVectorMachineAutomation动手v2Release
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩