积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部云计算&大数据(13)机器学习(13)

语言

全部英语(10)中文(简体)(3)

格式

全部PDF文档 PDF(13)
 
本次搜索耗时 0.023 秒,为您找到相关结果约 13 个.
  • 全部
  • 云计算&大数据
  • 机器学习
  • 全部
  • 英语
  • 中文(简体)
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 4 - Efficient Architectures

    Recurrent Neural Network. The image on the left shows a recurrent cell processing the input sequence element at time step t. The image on the right explains the processing of the entire input sequence across indicates that the first position in the english sequence has a strong relationship with the first element in the spanish sequence. That makes sense because typically21 the sentences in both the languages sequences. It takes into account, for instance, the relationship of the first element in the first sequence and the last element in the second sequence. Hence, it addresses the limitations of RNN with long
    0 码力 | 53 页 | 3.92 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 7 - Automation

    consists of all the combinations of valid hyperparameters values. Each trial is configured with an element from the trial set. After all the trials are complete, we pick the one with the best results. The convolution are two different choices for primitive operations. The combination operation has two choices: element wise addition or the concatenation of output of primitive operations. The concatenation operation count=1), ] The STATE_SPACE has three components to mimic the NASNet search space. The hidden_state element can take two values to represent the two input hidden states to a cell. The primitives and the combination
    0 码力 | 33 页 | 2.48 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 2 - Compression Techniques

    0, 3) print(x_q) This returns the following result. [0 1 2 3 4 5 6 7 7] Table 2-2 shows the element wise comparison of x and xq. x -10.0 -7.5 -5.0 -2.5 0 2.5 5.0 7.5 10.0 xq 0 1 2 3 4 5 6 7 7 Table learning conventionally. We receive this dequantized array upon running the code. Note that the last element was supposed to be 10.0, and the error is 2.5. array([-10. , -7.5, -5. , -2.5, 0. , 2.5, result of the operation (XW + b) is [batch size, D2]. σ is a nonlinear function that is applied element-wise to the result of (XW + b). Some examples of the nonlinear functions are ReLU (ReLU(x) = x if
    0 码力 | 33 页 | 1.96 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 5 - Advanced Compression Techniques

    list all the centroids in a codebook and replace each element in our tensor with the index of the centroid in the codebook closest to that element. The decoding process simply requires replacing the centroid (typically for floating point values), the codebook will cost us bytes to store. For each tensor element we will now store only the index of its centroid in the codebook, which will only take up bits. (WCSS) metric. . Here, we are trying to find a set which has centroids , such that for each element that is closest to the centroid in , the sum of the squared distances between the every such weight
    0 码力 | 34 页 | 3.18 MB | 1 年前
    3
  • pdf文档 机器学习课程-温州大学-03深度学习-PyTorch入门

    矩阵逐元素(Element-wise)乘法 torch.mul() torch.mul(mat1, other, out=None) 其中 other 乘数可以是标量,也可以是任意维度的矩阵 , 只要满足最终相乘是可以broadcast的即可。 15 1.Tensors张量乘法 5. 两个运算符 @ 和 * @:矩阵乘法,自动执行适合的矩阵乘法函数 *:element-wise乘法
    0 码力 | 40 页 | 1.64 MB | 1 年前
    3
  • pdf文档 Lecture Notes on Support Vector Machine

    infima) of a subset S of a partially ordered set T is the greatest element in T that is less than or equal to all elements of S, if such an element exists. More details about infimum and its counterpart suprema
    0 码力 | 18 页 | 509.37 KB | 1 年前
    3
  • pdf文档 keras tutorial

    activation function, which accepts the summation of all input multiplied with its corresponding weight plus overall bias, if any available. Keras 36 result = Activation(SUMOF(input * weight)
    0 码力 | 98 页 | 1.57 MB | 1 年前
    3
  • pdf文档 Machine Learning

    10 / 19 Back-Propagation: Warm Up • Vectorization a[l] = σ(w[l]a[l−1] + b[l]) where σ(·) is an element-wise function such that σ(v)j = σ(vj) • Introduce an intermediate variable z[l] = w[l]a[l−1] +
    0 码力 | 19 页 | 944.40 KB | 1 年前
    3
  • pdf文档 PyTorch Tutorial

    And more operations like: Indexing, slicing, reshape, transpose, cross product, matrix product, element wise multiplication etc... Tensor (continued) • Attributes of a tensor 't': • t= torch.randn(1)
    0 码力 | 38 页 | 4.09 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 6 - Advanced Learning Techniques - Technical Review

    you can create from your unlabeled dataset, a few simple pretext tasks can be to predict the last element (future) from the previous elements (past), or the other way around. Again to re-emphasize we are
    0 码力 | 31 页 | 4.03 MB | 1 年前
    3
共 13 条
  • 1
  • 2
前往
页
相关搜索词
EfficientDeepLearningBookEDLChapterArchitecturesAutomationCompressionTechniquesAdvanced机器学习课程温州大学03深度PyTorch入门LectureNotesonSupportVectorMachinekerastutorialTutorialTechnicalReview
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩