积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部云计算&大数据(16)机器学习(16)

语言

全部中文(简体)(15)英语(1)

格式

全部PDF文档 PDF(16)
 
本次搜索耗时 0.059 秒,为您找到相关结果约 16 个.
  • 全部
  • 云计算&大数据
  • 机器学习
  • 全部
  • 中文(简体)
  • 英语
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 动手学深度学习 v2.0

    可以在其他软件中执行,或者为了获得科学的理解而进行 检查。 之前的介绍中,我们只依靠深度学习框架来完成训练的工作,而忽略了操作参数的具体细节。本节,我们将 介绍以下内容: • 访问参数,用于调试、诊断和可视化; • 参数初始化; • 在不同模型组件间共享参数。 我们首先看一下具有单隐藏层的多层感知机。 74 https://wiki.python.org/moin/GlobalInterpreterLock 性”。 2. 局部性(locality):神经网络的前面几层应该只探索输入图像中的局部区域,而不过度在意图像中相隔 较远区域的关系,这就是“局部性”原则。最终,可以聚合这些局部特征,以在整个图像级别进行预测。 让我们看看这些原则是如何转化为数学表示的。 6.1.2 多层感知机的限制 首先,多层感知机的输入是二维图像X,其隐藏表示H在数学上是一个矩阵,在代码中表示为二维张量。其 中X和H 5 examples/sec on cuda:0 小结 • Inception块相当于一个有4条路径的子网络。它通过不同窗口形状的卷积层和最大汇聚层来并行抽取 信息,并使用1×1卷积层减少每像素级别上的通道维数从而降低模型复杂度。 • GoogLeNet将多个设计精细的Inception块与其他层(卷积层、全连接层)串联起来。其中Inception块 的通道数分配之比是在ImageNet数据集上通过大量的实验得来的。
    0 码力 | 797 页 | 29.45 MB | 1 年前
    3
  • pdf文档 【PyTorch深度学习-龙龙老师】-测试版202112

    层)、DenseNet121(121 层)等模型相继被提出,同时输入图 片的大小也从28 × 28逐渐增大,变成224 × 224、416 × 416等,这些变化使得网络的总参 数量可达到千万、上亿级别,如图 1.13 所示。 网络规模的增大,使得神经网络的容量也相应增大,从而能够学习到复杂的数据模 态,模型的性能也会随之提升;另一方面,网络规模的增大,意味着更容易出现过拟合现 象,训练需要的数据集和计算代价也会变大。 得益于发布时间较早,以及 Google 在深度学习领域的影响力,TensorFlow 很快成为最 流行的深度学习框架。但是由于 TensorFlow 接口设计频繁变动,功能设计重复冗余, 符号式编程开发和调试非常困难等问题,TensorFlow 1.x 版本一度被业界诟病。2019 年,Google 推出 TensorFlow 2 正式版本,将以动态图优先模式运行,从而能够避免 TensorFlow 1 PyTorch 是 Facebook 基于原 Torch 框架推出的采用 Python 作为主要开发语言的深度学 习框架。PyTorch 借鉴了 Chainer 的设计风格,采用命令式编程,使得搭建网络和调试 网络非常方便。尽管 PyTorch 在 2017 年才发布,但是由于精良紧凑的接口设计, PyTorch 在学术界获得了广泛好评。在 PyTorch 1.0 版本后,原来的 PyTorch 与 Caffe2
    0 码力 | 439 页 | 29.91 MB | 1 年前
    3
  • pdf文档 QCon北京2018-《未来都市--智慧城市与基于深度学习的机器视觉》-陈宇恒

    l单机、简易分布式人脸检测、跟踪、比对平台 l处理数十路到数百路监控摄像头数据 l千万级别深度学习特征检索 l行业试水 2018-2019 l云原生Cloud-Native超大规模视图存储、处理、检 索 l处理数万到数十万路,城市范围级别监控、门禁摄 像头数据 l10-100 Billion级别深度学习特征检索 - PB以上级别数据库存储 - 100PB级别抓拍图片存储 - 每秒万次并发检索请求 l大规模推广应用 Go在开发高性能应用上也有一些不足, 对比C++: - 无法直接控制操作系统线程,CUDA 调用需要特殊处理 - 部分标准库实现依赖reflect,性能较 差 - GC的带来的开销,如在Go Heap上 构建百万以上级别的对象缓存,需要 仔细优化 百倍慢于等价的C实现! 回顾 • 智慧城市中,在智能安防领域机器视觉有着爆发式应用 • 我们使用基于深度学习的机器视觉技术,构建了超大规模的自我演化 的分布式智能系统
    0 码力 | 23 页 | 9.26 MB | 1 年前
    3
  • pdf文档 超大规模深度学习在美团的应用-余建平

    美团点评用户平台研究员 自我介绍 自我介绍 2011年硕士毕业于南京大学计算机科学与技术系。毕业后曾在百度凤巢从事机器学习 工程相关的工作,加入美团后,负责超大规模机器学习系统,从无到有搭建起支持千亿 级别规模的深度学习系统,与推荐、搜索、广告业务深度合作,在算法上提供从召回到 排序的全系统优化方案,在工程上提供离线、近线、在线的全流程解决方案。 目录 • 美团超大规模模型场景简介 • 超大规模机器学习MLX 美团推荐 美团搜索 美团广告 美团应用场景简介 • 场景特点 亿级的用户,千万级的O2O商品 海量的用户行为,完整的交易闭环 LBS相关的推荐 • 模型特点 百亿级别的训练数据 千亿级别的模型特征 秒级实时的模型反馈 目录 • 美团超大规模模型场景简介 • 超大规模机器学习MLX  MLX平台目标  MLX平台架构 • 模型场景应用  召回模型 粗排阶段的特点  候选集大,通常在千到万级别  线上的响应时间要求高,通常在几到十几ms • 简单模型  计算耗时短:线性模型LR、树模型  模型表达能力不足,效果一般 • 复杂模型  DNN模型解决耗时是关键,利用预计算解决耗时问题  效果保障:保证用户的个性化信息,降低候选集计算复杂度 粗排模型 • 精排阶段的特点  候选集较少,通常在百级别  线上耗时相对宽松,几十毫秒(视效果而定)
    0 码力 | 41 页 | 5.96 MB | 1 年前
    3
  • pdf文档 经典算法与人工智能在外卖物流调度中的应用

    调度系统 一. 智能调度系统的 大数据分析监控 二. 智能调度系统中 的人工智能 三. 调度系统 智能调度系统的分析监控 17 • 真实再现调度场景细节 • 回溯定位异常调度原因,诊断调试算法 • 实时获取调度监控指标 • 及时预警引入人工干预 • 精准模拟实际订单分布情况 • 有效评估调度算法的改进效果 • 合理划分物流范围 • 节省调度运力,提升商户配送能力 • 云端虚拟队列,实现调度指派 云端虚拟队列,实现调度指派 • 提升物流效率 仿真系统 实时监控 时光机 寻宝系统 1 2 3 4 5 时光机系统—历史数据可视化分析 真实再现调度场景细节 回溯定位异常调度原因,诊断调试算法 18 1 实时监控系统—当前状况实时监控 19 实时获取调度监控指标 及时预警引入人工干预 2 仿真系统—未来效果仿真预测 订单 在岗骑 士数量 调度 算法 餐厅出餐 时间
    0 码力 | 28 页 | 6.86 MB | 1 年前
    3
  • pdf文档 从推荐模型的基础特点看大规模推荐类深度学习系统的设计 袁镱

    更灵活的⽤法:模型多切⽚,按需上线 � Dssm � wdl ... 分布式Serving集群 副本1 副本2 Group 1 Group N 副本1 副本2 推理节点 SDK MB级别DNN部分 Sparse Hotkey TB级别Embedding部分 全量模型,TB级,低峰期(Cos存储) 增量模型,GB级,20分钟(Cos存储) 实时模型,KB级,秒(Kafka) 分布式 Serving集群 痛点: 1. 更少的values: 变⻓Embedding 特征出现次数少,⽤1个float 结合show/click,有效果提升 2. 更少的key: group lasso key级别的稀疏化 3. 更短的values a) 混合精度: float16+int8+int4 b) 量化压缩,1bit或2bit 优点:与优化器⽆关 缺点:1. 只适合低频特征多的场景
    0 码力 | 22 页 | 6.76 MB | 1 年前
    3
  • pdf文档 机器学习课程-温州大学-02-数学基础回顾-1.CS229-LinearAlgebra

    初始定义(在一行数学中)之后。 这些不同方法的直接优势在于它们允许您在向量的级别/单位而不是标量上进行操作。 为了完全理解线 性代数而不会迷失在复杂的索引操作中,关键是要用尽可能多的概念进行操作。 实际上所有的线性代数都处理某种矩阵乘法,花一些时间对这里提出的观点进行直观的理解是非常必要 的。 除此之外,了解一些更高级别的矩阵乘法的基本属性是很有必要的: 矩阵乘法结合律: 矩阵乘法分配律:
    0 码力 | 19 页 | 1.66 MB | 1 年前
    3
  • pdf文档 AI大模型千问 qwen 中文文档

    /quantize models/7B/qwen1_5-7b-chat-fp16.gguf models/7B/qwen1_5-7b-chat-q2_k.gguf q2_ �→k 我们现在提供了以下量化级别的 GGUF 模型:q2_k 、q3_k_m 、q4_0 、q4_k_m 、q5_0 、q5_k_m 、q6_k 和 q8_0 。欲了解更多信息,请访问 llama.cpp 。 1.10 vLLM 之一。在大多数情况下,我们建议在多 GPU 训练中使用 ZeRO3,但针对 Q-LoRA,我们推荐使用 ZeRO2。 有一系列需要调节的超参数。您可以向程序传递 --bf16 或 --fp16 参数来指定混合精度训练所采用的精 度级别。此外,还有其他一些重要的超参数如下: • --output_dir: the path of your output models or adapters. • --num_train_epochs:
    0 码力 | 56 页 | 835.78 KB | 1 年前
    3
  • pdf文档 深度学习在电子商务中的应用

    发货 的] q : [我的 增 票 认证 已经 成功 为什么 还 没有 给 我 寄 发票 呢]; a : [您好 请问 有 什么 可 以 帮 您 的 呢] q : [可以 有 人员 上门 帮忙 安装 调试 吗]; a : [安装 师傅 上门 安装 的] q : [零钱宝 没 得 钱 呢]; a : [您 可以 在 易付宝 里 申请 一下] q : [他 说 等下 就 送]; a : [那 您 可以 先
    0 码力 | 27 页 | 1.98 MB | 1 年前
    3
  • pdf文档 《TensorFlow 快速入门与实战》4-实战TensorFlow房价预测

    CSV(comma-separated) 文件到数据框的功能。 数据可视化库:matplotlib & seaborn & mplot3d matplotlib 是一个 Python 2D 绘图库,可以生成出版物质量级别的图像和各种硬拷贝格式, 并广泛支持多种平台,如:Python 脚本,Python,IPython Shell 和 Jupyter Notebook。 seaborn 是一个基于 matplotlib的
    0 码力 | 46 页 | 5.71 MB | 1 年前
    3
共 16 条
  • 1
  • 2
前往
页
相关搜索词
动手深度学习v2PyTorch深度学习QCon北京2018未来都市智慧城市基于机器视觉陈宇恒超大大规规模大规模超大规模美团应用建平经典算法人工智能人工智能外卖物流调度推荐模型基础特点系统设计课程温州大学02数学回顾CS229LinearAlgebraAI千问qwen中文文档电子商务电子商务TensorFlow快速入门实战房价预测
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩