积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部云计算&大数据(74)机器学习(74)

语言

全部中文(简体)(73)英语(1)

格式

全部PDF文档 PDF(74)
 
本次搜索耗时 0.070 秒,为您找到相关结果约 74 个.
  • 全部
  • 云计算&大数据
  • 机器学习
  • 全部
  • 中文(简体)
  • 英语
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 微博在线机器学习和深度学习实践-黄波

    微博在线机器学习和深度学习实践 黄波 @黄波_WB 资深技术专家 2019.5 目录 1.推荐篇 2.平台篇 3.总结篇 1 目录 • 推荐场景 • 推荐 • 在线机器学习 • 深度学习 • 平台背景 • 平台架构 • 平台效果 • 微博技术里程碑 • 微博业务生态 推荐篇 APPLICATION 推荐场景、在线机器学习和深度学习 11 1 推荐场景 • • 信息流 热门流 视频流 关系流 • 推荐流 图片推荐流 正文推荐流 视频推荐流 1 推荐场景 • 推荐 • 在特定场景下,根据用户行为和特点,向用户推荐感兴趣的对象集 • 模型: • 趋势 • 实时化:在线机器学习 • 深度化:深度学习 • 平台化:机器学习平台 2 推荐 • 实时化 • 特征实时化:更及时反馈用户行为,更细粒度刻画用户 • 模型实时化:根据线上样本实时训练模型,及时地反映对象的线上变化 节点异常修复 3 在线机器学习-实时样本生成 • 在线机器学习模型训练:Flink/Blink+WeiPS 样本生成和特征处理 1.配置化 2.多标签样本 3.支持高维HASH 训练预处理 1.标签选择 2.标签UDF 3.样本过滤 4.特征过滤 模型训练 1.支持回归和分类 2.支持LR、FM、 DeepFM等模型 3.支持SGD 、 FTRL 、 Adagrad等优化算法
    0 码力 | 36 页 | 16.69 MB | 1 年前
    3
  • pdf文档 机器学习课程-温州大学-12深度学习-自然语言处理和词嵌入

    1 2023年05月 深度学习-自然语言处理和词嵌入 黄海广 副教授 2 03 Word2Vec 04 GloVe 本章目录 01 词汇表征和文本数据处理 02 词嵌入 05 GPT 3 1.词汇表征 01 词汇表征和文本数据处理 03 Word2Vec 04 GloVe 02 词嵌入 05 GPT − ?woman = −1 0.01 0.03 0.09 − 1 0.02 0.02 0.01 = −2 −0.01 0.01 0.08 ≈ −2 0 0 0 这个结果表示,man和woman主要的差异是gender(性别)上的差异 类似的,假如你用?king减去?queen,最后也会得到一样的结果 12 2.词嵌入 嵌入矩阵 13 2.词嵌入 嵌入矩阵 14 3 很高, 而是把它转变为10,000个二分类问题,每个都很容易计算 ,每次迭代我们要做的只是训练它们其中的5个,一般而言 就是? + 1个,其中?个负样本和1个正样本。这也是为什么 这个算法计算成本更低,因为只需更新? + 1个逻辑单元, ? + 1个二分类问题,相对而言每次迭代的成本比更新 10,000维的softmax分类器成本低。 ? ?? = ? ?? 3 4 σ?=1 10
    0 码力 | 44 页 | 2.36 MB | 1 年前
    3
  • pdf文档 《TensorFlow 2项目进阶实战》2-快速上手篇:动⼿训练模型和部署服务

    TensorFlow 2 项目实战进阶 扫码试看/订阅 《TensorFlow 2 项目进阶实战》视频课程 快速上手篇:动⼿训练模型和部署服务 • TensorFlow 2 开发环境搭建 • 使用 tf.keras.datasets 加载数据 • 使用 tf.data.Dataset 加载数据 • 使用 tf.keras.Model 管理模型 • Fashion MNIST 数据集介绍
    0 码力 | 52 页 | 7.99 MB | 1 年前
    3
  • pdf文档 动手学深度学习 v2.0

    广播机制 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 2.1.4 索引和切片 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 2.1.5 节省内存 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 2.4.1 导数和微分 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 2.4.2 偏导数 . . 2.6.2 处理多个随机变量 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 2.6.3 期望和方差 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 2.7 查阅文档 . .
    0 码力 | 797 页 | 29.45 MB | 1 年前
    3
  • pdf文档 【PyTorch深度学习-龙龙老师】-测试版202112

    总的来说,本书适合于大学三年级左右的理工科本科生和研究生,以及其他对人工智能算法 感兴趣的朋友。 本书共 15 章,大体上可分为 4 个部份:第 1~3 章为第 1 部分,主要介绍人工智能的初 步认知,并引出相关问题;第 4~5 章为第 2 部分,主要介绍 PyTorch 相关基础,为后续算法 实现铺垫;第 6~9 章为第 3 部分,主要介绍神经网络的核心理论和共性知识,让读者理解深 度学习的本质;第 尽管每天都有深度学习相关算法论文的发布,但是作者相信,深度学习的核心思想和基 础理论是共通的。本书已尽可能地涵盖其中基础、主流并且前沿的算法知识,但是仍然有很 多算法无法涵盖,读者学习完本书后,可以自行搜索相关方向的研究论文或资料,进一步学 习。 深度学习是一个非常前沿和广袤的研究领域,鲜有人士能够对每一个研究方向都有深刻 的理解。作者自认才疏学浅,略懂皮毛,同时也限于时间和篇幅关系,难免出现理解偏差甚 至错缪之处,若能大方指出,作者将及时修正,不胜感激。 者快速上手深度学习算法,另一方面也能汇聚众多行业专家们的力量,修正测试版中的谬误 之处,让本书变得更为完善。 本书虽然免费开放电子版,供个人学习使用,但是未经许可,不能用于任何个人或者企 业的商业用途,违法盗版和销售,必究其法律责任。 龙龙老师 2021 年 10 月 19 日 预览版202112 配 套 资 源 ❑ 提交错误或者修改等反馈意见,请在 Github Issues 页面提交:
    0 码力 | 439 页 | 29.91 MB | 1 年前
    3
  • pdf文档 Keras: 基于 Python 的深度学习库

    版本请访问: https://github.com/wanzhenchn/keras-docs-zh。 感谢 keras-team 所做的中文翻译工作,本文档制作基于此处。 严正声明:本文档可免费用于学习和科学研究,可自由传播,但切勿擅自用于商业用途,由 此引发一切后果贡献者概不负责。 The main reason of organizing PDF version based the Chinese 5 2.1 Keras 优先考虑开发人员的经验 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.2 Keras 被工业界和学术界广泛采用 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.3 Keras 可以轻松将模型转化为产品 . . . . . . . . . . . . . 6 2.4 Keras 支持多个后端引擎,并且不会将你锁定到一个生态系统中 . . . . . . . . . . 6 2.5 Keras 拥有强大的多 GPU 和分布式训练支持 . . . . . . . . . . . . . . . . . . . . . . 6 2.6 Keras 的发展得到深度学习生态系统中的关键公司的支持 . . . . . .
    0 码力 | 257 页 | 1.19 MB | 1 年前
    3
  • pdf文档 机器学习课程-温州大学-13深度学习-Transformer

    作为编解码器。RNN模块每次只能够吃进一个输入token和前一次的隐藏状态,然 后得到输出。它的时序结构使得这个模型能够得到长距离的依赖关系,但是这也 使得它不能够并行计算,模型效率十分低。 在没有transformer的时候,我们 都是用什么来完成这系列的任务 的呢? 5 1.Transformer介绍 Seq2Seq任务 Seq2Seq 任务指的是输入和输出都是 序列的任务,输出的长度不确定时采 制每一步计算不依赖于上一步的计算结果,因此可以和CNN一样并行处理。 3.效果好:在Attention 机制引入之前,有一个问题大家一直很苦恼:长距离的信 息会被弱化,就好像记忆能力弱的人,记不住过去的事情是一样的。 10 2017年google的机器翻译团队在 NIPS上发表了Attention is all you need的文章,开创性地提出了 在序列转录领域,完全抛弃 CNN和RNN,只依赖Attention-注 Transformer摆脱了人工标注数据集的缺陷,模型在质 量上更优、更易于并行化,所需训练时间明显更少 ◼ Transformer通过成功地将其应用于具有大量和有限训 练数据的分析,可以很好地推广到其他任务 ◼ Transformer,它完全基于注意力机制, 完全不用重复 和卷积,因而这些模型在质量上更优,同时更易于并 行化,并且需要的训练时间明显更少。 ◼ Transformer出现以后,迅速取代了RNN系列变种,跻
    0 码力 | 60 页 | 3.51 MB | 1 年前
    3
  • pdf文档 Qcon北京2018-《文本智能处理的深度学习技术》-陈运文

    达观数据 陈运文 文本智能处理的深度学习技术 达观数据CEO 陈运文 博士 • 中 国 计 算 机 学 会 高 级 会 员 , A C M 和 I E E E 学 会 会 员 , 复 旦 大 学 计 算 机 博 士 和 杰 出 毕 业 生 • 原 腾 讯 文 学 高 级 总 监 、 盛 大 文 学 首 席 数 据 官 、 百 度 核 心 技 术 工 程 师 • 三 十 项 国 家 技 术 国 际 学 术 论 文 , 译 著 《 智 能 W e b 算 法 》 专 注 于 企 业 文 本 挖 掘 技 术 和 相 关 应 用 系 统 的 服 务 个人简介——达观数据CEO 陈运文 达观数据:全球领先的文本智能处理专家 l 为企业提供文本挖掘、知识图谱、搜索引擎和个性化推荐等文本智能处理技术服 务,是国内首家将自动语义分析技术应用于企业数据化运营的人工智能公司 专注于文本挖掘的国际领军人工智能企业 达观专注于人工智能中的文本处理细分领域 文本处理任务 什么是NLP 概念:Natural Language Processing 自然语言处理 目的:让机器理解人类的语言,是人工智能领域的重要 分支,用于分析、理解和生成自然语言,方便人机交流 应用:智能问答,机器翻译,文本分类,文本摘要,标 签提取,情感分析,主题模型 NLP发展简史 1950S 1980s 1990s 2006~至今 以机器翻译为开端,作
    0 码力 | 46 页 | 25.61 MB | 1 年前
    3
  • pdf文档 机器学习课程-温州大学-07深度学习-卷积神经网络

    预处理 对图像做一 种或一些预 处理,使图 像满足后继 处理的要 求 ,如:二次 取样保证图 像坐标的正 确,平滑、 去噪等 特征提取 从图像中提取 各种复杂度的 特征,如:线 ,边缘提取和 脊侦测,边角 检测、斑点检 测等局部化的 特征点检测 检测/分割 对图像进行分割 ,提取有价值的 内容,用于后继 处理, 如:筛 选特征点,分割 含有特定目标的 部分 高级处理 验证得到的 •图像分类 •目标检测 •图像分割 •目标跟踪 •OCR文字识别 •图像滤波与降噪 •图像增强 •风格迁移 •三维重建 •图像检索 •GAN 5 图像分类 6 目标检测 目标检测结合了目标分类和定位两个任务。 one-stage(YOLO,YOLO9000,YOLOV3,YOLOV4, YOLOV5,SSD等) two-stage(OverFeat,R-CNN,Fast R-CNN,Faster 如果计算一下的话,可得知数据量为12288 12 01 计算机视觉概述 02 卷积神经网络概述 03 卷积神经网络计算 04 卷积神经网络案例 本章目录 13 深层神经网络和卷积神经网络 Input Layer Hidden Layers Output Layer a[4] X Ŷ a[1] 1 a[1] 2 a[1] 3 a[1] n a[2]
    0 码力 | 29 页 | 3.14 MB | 1 年前
    3
  • pdf文档 全连接神经网络实战. pytorch 版

    . . . . . . . . . . . . . . . . . . . . . 15 3.1 模型的加载与保存 15 3.2 初始化网络权重-方法一 16 3.3 初始化网络权重-方法二和三 17 4 构建自己的数据集 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . DezemingFamily 系列书和小册子因为是电子书,所以可以很方便地进行修改和重新发布。如果您 获得了 DezemingFamily 的系列书,可以从我们的网站 [https://dezeming.top/] 找到最新版。对 书的内容建议和出现的错误欢迎在网站留言。 0.1 本书前言 尽管各种关于神经网络 python 实战的资料已经很多了,但是这些资料也各有优点和缺点,有 时候也很难让新手有比较好的选择。 就已经具备了开始搭建和训练网络 的能力。此时,最好的方法就是给我们一个由简及难的程序示例,我们能够快速搭建出一个网络, 我们可以开始训练,以及指导如何计算训练后的结果准确率等信息。 这也是我要开始写这么一本小书的初衷,我会把本小书控制在 3 小时的学习时间之内。也就 是说,只知道一丁点 python 知识和神经网络的概念,而从未使用过 pytorch 的读者,只需要三个 小时,就可以用 pytroch
    0 码力 | 29 页 | 1.40 MB | 1 年前
    3
共 74 条
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 8
前往
页
相关搜索词
微博在线机器学习深度实践黄波课程温州大学12自然语言自然语言处理嵌入TensorFlow快速入门实战上手训练模型部署服务动手v2PyTorch深度学习Keras基于Python13TransformerQcon北京2018文本智能技术陈运文07卷积神经网络神经网神经网络连接pytorch
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩