机器学习课程-温州大学-02-数学基础回顾-0.机器学习的数学基础整理(国内教材)haiguang2000@qq.com 数学基础笔记(V1.01) 最后修改:2018-04-19 你不是一个人在战斗! I 目录 机器学习的数学基础 .............................................................................................. ................. 1 高等数学 ........................................................................................................................... 1 线性代数 ......................................... ............................................................ 19 机器学习的数学基础 1 机器学习的数学基础 高等数学 1.导数定义: 导数和微分的概念 ?′(?0) = lim ??→0 ?(?0+??)−?(?0) ?? (1) 或者:?′(?0) =0 码力 | 31 页 | 1.18 MB | 1 年前3
机器学习课程-温州大学-高等数学回顾2021年07月 机器学习-高等数学回顾 黄海广 副教授 2 高等数学 1.导数定义: 导数和微分的概念 ?′(?0) = lim ??→0 ?(?0+??)−?(?0) ?? (1) 或者:?′(?0) = lim ?→?0 ?(?)−?(?0) ?−?0 (2) 3 高等数学 2.左右导数导数的几何意义和物理意义 函数?(?)在?0处的左、右导数分别定义为: 左导数: (?)−?(?0) ?−?0 4 高等数学 3.函数的可导性与连续性之间的关系 Th1: 函数?(?)在?0处可微⇔ ?(?)在?0处可导。 Th2:若函数在点?0处可导,则? = ?(?)在点?0处连续,反之则不成立。即函数连续不一定可 导。 Th3:?′(?0)存在⇔ ?′−(?0) = ?′+(?0) 5 高等数学 4.平面曲线的切线和法线 切线方程 : ? − ?0 = 0) ≠ 0 6 高等数学 5.四则运算法则 设函数? = ?(?),? = ?(?)在点?可导,则: (1) ? ± ? ′ = ?′ ± ?′ (2) (??)′ = ??′ + ??′ ?(??) = ??? + ??? (3) ( ? ?)′ = ??′−??′ ?2 (? ≠ 0) ?( ? ?) = ???−??? ?2 7 高等数学 6.基本导数与微分表0 码力 | 28 页 | 787.86 KB | 1 年前3
数学运算0 码力 | 11 页 | 1015.16 KB | 1 年前3
机器学习课程-温州大学-02-数学基础回顾-2.CS229-Prob本文是斯坦福大学CS229机器学习课程的基础材料,原始文件下载 原文作者:Arian Maleki , Tom Do 翻译:石振宇 审核和修改制作:黄海广 备注:请关注github的更新。 CS229 机器学习课程复习材料-概率论 CS229 机器学习课程复习材料-概率论 概率论复习和参考 1. 概率的基本要素 1.1 条件概率和独立性 2. 随机变量 2.1 累积分布函数 6 一些常见的随机变量 3. 两个随机变量 3.1 联合分布和边缘分布 3.2 联合概率和边缘概率质量函数 3.3 联合概率和边缘概率密度函数 3.4 条件概率分布 3.5 贝叶斯定理 3.6 独立性 3.7 期望和协方差 4. 多个随机变量 4.1 基本性质 4.2 随机向量 4.3 多元高斯分布 5. 其他资源 概率论复习和参考 概率论是对不确定性的研究。通过这 概率论是对不确定性的研究。通过这门课,我们将依靠概率论中的概念来推导机器学习算法。这篇笔记 试图涵盖适用于CS229的概率论基础。概率论的数学理论非常复杂,并且涉及到“分析”的一个分支:测 度论。在这篇笔记中,我们提供了概率的一些基本处理方法,但是不会涉及到这些更复杂的细节。 1. 概率的基本要素 为了定义集合上的概率,我们需要一些基本元素, 样本空间 :随机实验的所有结果的集合。在这里,每个结果 可以被认为是实验结束时现0 码力 | 12 页 | 1.17 MB | 1 年前3
机器学习课程-温州大学-02-数学基础回顾-1.CS229-LinearAlgebra本文是斯坦福大学CS 229机器学习课程的基础材料,原始文件下载 原文作者:Zico Kolter,修改:Chuong Do, Tengyu Ma 翻译:黄海广 备注:请关注github的更新,线性代数和概率论已经更新完毕。 CS229 机器学习课程复习材料-线性代数 CS229 机器学习课程复习材料-线性代数 线性代数复习和参考 1. 基础概念和符号 1.1 基本符号 2 3.4 矩阵的迹 3.5 范数 3.6 线性相关性和秩 3.7 方阵的逆 3.8 正交阵 3.9 矩阵的值域和零空间 3.10 行列式 3.11 二次型和半正定矩阵 3.12 特征值和特征向量 3.13 对称矩阵的特征值和特征向量 4.矩阵微积分 4.1 梯度 4.2 黑塞矩阵 4.3 二次函数和线性函数的梯度和黑塞矩阵 4.4 最小二乘法 4.5 行列式的梯度 4.6 基础概念和符号 线性代数提供了一种紧凑地表示和操作线性方程组的方法。 例如,以下方程组: 这是两个方程和两个变量,正如你从高中代数中所知,你可以找到 和 的唯一解(除非方程以某 种方式退化,例如,如果第二个方程只是第一个的倍数,但在上面的情况下,实际上只有一个唯一 解)。 在矩阵表示法中,我们可以更紧凑地表达: 我们可以看到,这种形式的线性方程有许多优点(比如明显地节省空间)。 1.1 基本符号0 码力 | 19 页 | 1.66 MB | 1 年前3
Keras: 基于 Python 的深度学习库Keras: 基于 Python 的深度学习库 Keras: The Python Deep Learning library* Author: Keras-Team Contributor: 万 震 (WAN Zhen) � wanzhenchn � wanzhen@cqu.edu.cn 2018 年 12 月 24 日 *Copyright © 2018 by Keras-Team Keras-Team 前 言 整理 Keras: 基于 Python 的深度学习库 PDF 版的主要原因在于学习 Keras 深度学习库时方 便本地查阅,下载最新 PDF 版本请访问: https://github.com/wanzhenchn/keras-docs-zh。 感谢 keras-team 所做的中文翻译工作,本文档制作基于此处。 严正声明:本文档可免费用于学习和科学研究,可自由传播,但切勿擅自用于商业用途,由 Otherwise, the contributor is not responsible for the consequences. 目录 I 目录 1 Keras: 基于 Python 的深度学习库 1 1.1 你恰好发现了 Keras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 码力 | 257 页 | 1.19 MB | 1 年前3
动手学深度学习 v2.0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 2.3.5 张量算法的基本性质 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 2.3.6 降维 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 2.3.11 关于线性代数的更多信息 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 2.4 微积分 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 2.5.1 一个简单的例子 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 2.5.2 非标量变量的反向传播 . . . . . . . . . . . . . . . . . . . . . . . .0 码力 | 797 页 | 29.45 MB | 1 年前3
从推荐模型的基础特点看大规模推荐类深度学习系统的设计 袁镱从推荐模型的基础特点看 袁镱 腾讯 个⼈简介 � ⽆量系统 � 项⽬于17年启动,先后经过了6个主要版本的 迭代 � 覆盖腾讯PCG全部业务的推荐场景,⽀持腾讯 IEG,CSIG,QQ⾳乐,阅⽂等业务的部分推 荐场景 � 袁镱 博⼠,专家⼯程师 � 研究⽅向:机器学习系统,云计算,⼤数据系统 � 负责腾讯平台与内容事业群(PCG)技术中台核 ⼼引擎:⽆量系统。⽀持⼤规模稀疏模型训练, ⼼引擎:⽆量系统。⽀持⼤规模稀疏模型训练, 上线与推理 提纲 �推荐场景深度学习系统的基本问题与特点 �推荐类模型的深度学习系统设计 � 系统维度 � 算法维度 �总结 基于深度学习模型的推荐流程,场景与⽬标 Serving系统 HDFS 数据 通道 训练系统 召回 业务服务 排序 混排 模型 管理 上线 管理 ⽆量 RGW/Cos/ kafka 样本 存储 实时样本 ⽣成服务 离线样本 ⽣成任务 � 推荐场景的重要性 � PCG的图⽂,视频推荐(腾讯视频,腾讯新 闻,QQ看点,浏览器,微视, QQ⼩世界等) � 腾讯系内容推荐:阅⽂集团,QQ⾳乐 � Facebook推荐场景推理成本占AI推理成本的 >72% [ISCA2020 RecNMP] � 千亿级推荐模型应⽤ O1. 千亿级特征(TB级)的模型的在线/离 线训练,在线推理服务和持续上线 O2. 针对推荐特点的深度优化,达到业界先0 码力 | 22 页 | 6.76 MB | 1 年前3
【PyTorch深度学习-龙龙老师】-测试版202112这是一本面向人工智能,特别是深度学习初学者的书,本书旨在帮助更多的读者朋友了 解、喜欢并进入到人工智能行业中来,因此作者试图从分析人工智能中的简单问题入手,一 步步地提出设想、分析方案以及实现方案,重温当年科研工作者的发现之路,让读者身临其 境式的感受算法设计思想,从而掌握分析问题、解决问题的能力。这种方式也是对读者的基 础要求较少的,读者在学习本书的过程中会自然而然地了解算法的相关背景知识,体会到知 识是为了解决问题而生的,避免陷入为了学习而学习的窘境。 识是为了解决问题而生的,避免陷入为了学习而学习的窘境。 尽管作者试图将读者的基础要求降到最低,但是人工智能不可避免地需要使用正式化的 数学符号推导,其中涉及到少量的概率与统计、线性代数、微积分等数学知识,一般要求读 者对这些数学知识有初步印象或了解即可。比起理论基础,读者需要有少量的编程经验,特 别是 Python 语言编程经验,显得更加重要,因为本书更侧重于实用性,而不是堆砌公式。 总的来说,本书适合于大学三年级左右的理工科本科生和研究生,以及其他对人工智能算法 能算法 感兴趣的朋友。 本书共 15 章,大体上可分为 4 个部份:第 1~3 章为第 1 部分,主要介绍人工智能的初 步认知,并引出相关问题;第 4~5 章为第 2 部分,主要介绍 PyTorch 相关基础,为后续算法 实现铺垫;第 6~9 章为第 3 部分,主要介绍神经网络的核心理论和共性知识,让读者理解深 度学习的本质;第 10~15 章为模型算法应用部分,主要介绍常见的算法与模型,让读者能够0 码力 | 439 页 | 29.91 MB | 1 年前3
机器学习课程-温州大学-01机器学习-引言2 目录 01 机器学习概述 02 机器学习的类型 03 机器学习的背景知识 04 机器学习的开发流程 3 1. 机器学习概述 01 认识Python 01 机器学习概述 02 机器学习的类型 03 机器学习的背景知识 04 机器学习的开发流程 4 机器学习与人工智能、深度学习的关系 人工智能:机器展现的人类智能 机器学习:计算机利用已有的数 据(经验),得出了某种模型,并利 用此模型预测未来的一种方法。 深度学习:实现机器学习的一种 技术 人工智能 机器学习 深度学习 5 杨立昆(Yann LeCun) 杰弗里·欣顿(Geoffrey Hinton) 本吉奥( Bengio ) 共同获得了2018年计算机科学的最高奖项 ——ACM图灵奖。 机器学习界的执牛耳者 Andrew Ng 中文名吴恩达,斯坦福大学副教 授,前“百度大脑”的负责人与百 度首席科学家。 出科学家,CCF 高级会员。 代表作:《统计学习方法》 机器学习界的国内泰斗 周志华,南京大学计算机科学与技 术系主任 、人工智能学院院长。 代表作:《机器学习》(西瓜书) 7 陈天奇,陈天奇是机器学习领域著名的青 年华人学者之一,本科毕业于上海交通 大学ACM班,博士毕业于华盛顿大学计 算机系。 主要贡献:设计了XGBoost算法。 机器学习界的青年才俊 何恺明,本科就读于清华大学,博士毕业于 香0 码力 | 78 页 | 3.69 MB | 1 年前3
共 83 条
- 1
- 2
- 3
- 4
- 5
- 6
- 9













