【PyTorch深度学习-龙龙老师】-测试版202112Himmelblau 函数优化实战 7.9 反向传播算法实战 7.10 参考文献 第 8 章 PyTorch 高级用法 8.1 常见功能模块 8.2 模型装配、训练与测试 8.3 模型保存与加载 8.4 自定义类 8.5 模型乐园 8.6 测量工具 8.7 可视化 8.8 参考文献 第 9 章 过拟合 9.1 模型的容量 9.2 过拟合与欠拟合 自动求导的结果与手动计算的结果完全一致。 3) 常用神经网络接口 PyTorch 除了提供底层的矩阵相乘、加减等数学函数,还内建了常用神经网络运算函 数、常用网络层、网络训练、模型保存与加载、模型部署等一系列深度学习系统的便捷功 能。常用网络层主要放置在 nn 子模块中,优化器主要放置在 optim 子模块中,模型部署主 要通过 ONNX 协议实现。使用 PyTorch 开发,可以方便地利用这些功能完成常用算法业务 的高斯分布: ? = 1. ? + . + ?, ? ∼ ?( , . 12) 通过随机采样? = 1 次,可以获得?个样本的训练数据集?train,代码如下: data = []# 保存样本集的列表 for i in range(100): # 循环采样 100 个点 x = np.random.uniform(-10., 10.) # 随机采样输入 x0 码力 | 439 页 | 29.91 MB | 1 年前3
Keras: 基于 Python 的深度学习库. . . . . . . 28 3.3.6 如何保存 Keras 模型? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 3.3.6.1 保存/加载整个模型(结构 + 权重 + 优化器状态) . . . . . . . . . 28 3.3.6.2 只保存/加载模型的结构 . . . . . . . . . . . . . . . . . . . . . . . . 29 3.3.6.3 只保存/加载模型的权重 . . . . . . . . . . . . . . . . . . . . . . . . 29 3.3.6.4 处理已保存模型中的自定义层(或其他自定义对象) . . . . . . . 30 3.3.7 为什么训练误差比测试误差高很多? . . . . . . . . . . . 3.3.19 Keras 配置文件保存在哪里? . . . . . . . . . . . . . . . . . . . . . . . . . . 36 3.3.20 如何在 Keras 开发过程中获取可复现的结果? . . . . . . . . . . . . . . . . 36 3.3.21 如何在 Keras 中安装 HDF5 或 h5py 来保存我的模型? . . . . . .0 码力 | 257 页 | 1.19 MB | 1 年前3
全连接神经网络实战. pytorch 版. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 3.1 模型的加载与保存 15 3.2 初始化网络权重-方法一 16 3.3 初始化网络权重-方法二和三 17 4 构建自己的数据集 . . . . . . . . . . . . . . . . . . . . . 本节源码参见 chapter2-2.py。 3. 更完善的神经网络 3.1 模型的加载与保存 15 3.2 初始化网络权重-方法一 16 3.3 初始化网络权重-方法二和三 17 本章我们的目标是把神经网络做的更完善。 3.1 模型的加载与保存 有时候我们希望将训练了一定轮数的模型参数保存起来,这个时候我们就需要保存和恢复模 型了。 model.state_dict() 函数可以得到模型的状态字典,里面包含了模型的参数权重与 bias 等信 息,我们可以用下面的代码来保存和恢复模型: # 保 存 模 型 torch . save ( model . state_dict () , path ) # 恢 复 模 型 model . load_state_dict ( torch . load ( path ) ) 其中,path 是保存模型的路径。有时候我们希望能同时保存模型的一些其他信息,比如 epoch 和0 码力 | 29 页 | 1.40 MB | 1 年前3
AI大模型千问 qwen 中文文档"} ] 然后只需通过一行代码运行校准过程: model.quantize(tokenizer, quant_config=quant_config, calib_data=data) 最后,保存量化模型: 14 Chapter 1. 文档 Qwen model.save_quantized(quant_path, safetensors=True, shard_size="4GB") 最后,保存量化模型: model.save_quantized(quant_path, use_safetensors=True) tokenizer.save_pretrained(quant_path) 很遗憾,save_quantized 方法不支持模型分片。若要实现模型分片,您需要先加载模型,然后使用来自 transformers 库的 save_pretrained 方法来保存并分片 把费用降到最低——SkyPilot 在各区域和云平台中为您挑选最便宜的资源。无需任何托管解决方案的 额外加价。 • 将服务扩展到多个副本上,所有副本通过单一 endpoint 对外提供服务 • 所有内容均保存在您的云账户中(包括您的虚拟机和 bucket) • 完全私密 - 没有其他人能看到您的聊天记录 22 Chapter 1. 文档 Qwen 1.11.2 安装 SkyPilot 我们建议您按照0 码力 | 56 页 | 835.78 KB | 1 年前3
动手学深度学习 v2.0. . . . . . . . . . . . . . . . . . . 208 5.5.1 加载和保存张量 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208 5.5.2 加载和保存模型参数 . . . . . . . . . . . . . . . . . . . . . . . . 题的认真研究最近才进入高潮。我们希望随着深度学习理论的发展,这本书的未来版本将能够在当前版本无 法提供的地方提供见解。 有时,为了避免不必要的重复,我们将本书中经常导入和引用的函数、类等封装在d2l包中。对于要保存到包 中的任何代码块,比如一个函数、一个类或者多个导入,我们都会标记为#@save。我们在 16.6节 中提供了这 些函数和类的详细描述。d2l软件包是轻量级的,仅需要以下软件包和模块作为依赖项: 现在开发人员要编写一个程序 来管理网上商城。经过思考,开发人员可能提出如下一个解决方案:首先,用户通过Web浏览器(或移动应 用程序)与应用程序进行交互;紧接着,应用程序与数据库引擎进行交互,以保存交易历史记录并跟踪每个 用户的动态;其中,这个应用程序的核心——“业务逻辑”,详细说明了应用程序在各种情况下进行的操作。 为了完善业务逻辑,开发人员必须细致地考虑应用程序所有可能遇到的边界情况,并为这些边界情况设计合0 码力 | 797 页 | 29.45 MB | 1 年前3
TensorFlow on Yarn:深度学习遇上大数据TensorFlow使用现状及痛点 • 多⼈多服务器使用混乱,计算资源如何划分?� • 没有GPUs集群资源管理和调度(内存、CPU、GPU、 端⼝),集群资源负载不均� • 训练数据⼿动分发,训练模型⼿动保存� • 进程遗留问题,需要⼿动杀死� • 缺乏作业统⼀管理,不便对作业运⾏状态跟踪� • 日志查看不⽅便� � 总结:� TensorFlow使用现状及痛点 • 集群资源的管理(目前支持CPU、内存,需要扩展GPU --input /home/xitong/tf-test/data \#训练样本HDFS路径� --output /home/xitong/tf-test/outputTest \ #保存模型的HDFS路径� --worker-num 3 \ #work数量 � --worker-memory 8192M \ #每个worker需要的内存� --worker-cores TensorFlow作业AM页面:� Container所在的机器� 分配到的GPU物理设备号� tensorboard url链接� Container角⾊� Container当前状态� 训练中保存的中间模型� 查看work、ps日志� TensorFlow on Yarn设计 TensorFlow作业Tensorboard页面:� TensorFlow on Yarn设计 Te0 码力 | 32 页 | 4.06 MB | 1 年前3
《TensorFlow 2项目进阶实战》2-快速上手篇:动⼿训练模型和部署服务keras.models.Model 使用 tf.keras.Model 构建模型 使用 tf.keras.Model 构建模型 使用 tf.keras.Model 训练模型 保存和加载 h5 模型 保存和加载 SavedModel 模型 Fashion MNIST 数据集介绍 Original MNIST dataset The MNIST database of handwritten0 码力 | 52 页 | 7.99 MB | 1 年前3
《TensorFlow 2项目进阶实战》1-基础理论篇:TensorFlow 2设计思想TensorFlow 2 核心模块 TensorFlow 2 核心模块概览 tf.keras:分布式和高性能的 Keras • 构建和训练模型的高层次 API • API 完全兼容原生 Keras • 支持保存和加载 TensorFlow SavedModel • 支持 Eager Execution • 支持分布式训练 tf.data:功能强大的数据管理模块 支持多种数据处理 图像解码 Shuffle0 码力 | 40 页 | 9.01 MB | 1 年前3
pytorch 入门笔记-03- 神经网络unsqueeze(0) 来添加其它的维数 在继续之前,我们回顾一下到目前为止用到的类。 回顾: ● torch.Tensor:一个用过自动调用backward() 实现支持自动梯度计算的多维数组 ,并且保存关于 个向量的梯度 w.r.t. ● nn.Module:神经网络模块。封装参数、移动到 GPU 上运行、导出、加载等。 ● nn.Parameter:一种变量,当把它赋值给一个Module 时,被自动0 码力 | 7 页 | 370.53 KB | 1 年前3
《TensorFlow 快速入门与实战》6-实战TensorFlow验证码识别ImageCaptcha(width, height,) – 创建 ImageCaptcha 实例 captcha.image.ImageCaptcha.write(‘1234’, ‘out.png’) – 生成验证码并保存 captcha.image.ImageCaptcha.generate(‘1234’) – 生成验证码图像 “Hello TensorFlow” Try it 输入与输出数据处理 输入数据处理0 码力 | 51 页 | 2.73 MB | 1 年前3
共 14 条
- 1
- 2













