The Idris Tutorial Version 0.99Nat -> Type) -> -- Property to show (P Z) -> -- Base case ((k : Nat) -> P k -> P (S k)) -> -- Inductive step (x : Nat) -> -- Show for all x P x nat_induction P p_Z p_S Z = p_Z nat_induction P p_Z p_S plus_ind n m = nat_induction (\x => Nat) m -- Base case, plus_ind Z m (\k, k_rec => S k_rec) -- Inductive step plus_ind (S k) m -- where k_rec = plus_ind k m n T o p r ov e t h at plus n m = plus m n0 码力 | 182 页 | 1.04 MB | 1 年前3
Idris 语言文档 Version 1.3.1Nat -> Type) -> -- Property to show (P Z) -> -- Base case ((k : Nat) -> P k -> P (S k)) -> -- Inductive step (x : Nat) -> -- Show for all x P x nat_induction P p_Z p_S Z = p_Z nat_induction P p_Z p_S plus_ind n m = nat_induction (\x => Nat) m -- Base case, plus_ind Z m (\k, k_rec => S k_rec) -- Inductive step plus_ind (S k) m -- where k_rec = plus_ind k m n 奔 奯 奰 奲 奯奶 奥 奴 奨 奡奴 plus n m = plus m n0 码力 | 224 页 | 2.06 MB | 1 年前3
The Idris Tutorial Version 1.0.1Nat -> Type) -> -- Property to show (P Z) -> -- Base case ((k : Nat) -> P k -> P (S k)) -> -- Inductive step (x : Nat) -> -- Show for all x P x nat_induction P p_Z p_S Z = p_Z nat_induction P p_Z p_S plus_ind n m = nat_induction (\x => Nat) m -- Base case, plus_ind Z m (\k, k_rec => S k_rec) -- Inductive step plus_ind (S k) m -- where k_rec = plus_ind k m n T o p r ov e t h at plus n m = plus m n0 码力 | 223 页 | 1.21 MB | 1 年前3
The Idris Tutorial Version 1.1.0Nat -> Type) -> -- Property to show (P Z) -> -- Base case ((k : Nat) -> P k -> P (S k)) -> -- Inductive step (x : Nat) -> -- Show for all x P x nat_induction P p_Z p_S Z = p_Z nat_induction P p_Z p_S plus_ind n m = nat_induction (\x => Nat) m -- Base case, plus_ind Z m (\k, k_rec => S k_rec) -- Inductive step plus_ind (S k) m -- where k_rec = plus_ind k m n T o p r ov e t h at plus n m = plus m n0 码力 | 223 页 | 1.21 MB | 1 年前3
The Idris Tutorial Version 0.99.2Nat -> Type) -> -- Property to show (P Z) -> -- Base case ((k : Nat) -> P k -> P (S k)) -> -- Inductive step (x : Nat) -> -- Show for all x P x nat_induction P p_Z p_S Z = p_Z nat_induction P p_Z p_S plus_ind n m = nat_induction (\x => Nat) m -- Base case, plus_ind Z m (\k, k_rec => S k_rec) -- Inductive step plus_ind (S k) m -- where k_rec = plus_ind k m n T o p r ov e t h at plus n m = plus m n0 码力 | 224 页 | 1.22 MB | 1 年前3
The Idris Tutorial Version 1.1.1Nat -> Type) -> -- Property to show (P Z) -> -- Base case ((k : Nat) -> P k -> P (S k)) -> -- Inductive step (x : Nat) -> -- Show for all x P x nat_induction P p_Z p_S Z = p_Z nat_induction P p_Z p_S plus_ind n m = nat_induction (\x => Nat) m -- Base case, plus_ind Z m (\k, k_rec => S k_rec) -- Inductive step plus_ind (S k) m -- where k_rec = plus_ind k m n T o p r ov e t h at plus n m = plus m n0 码力 | 223 页 | 1.21 MB | 1 年前3
The Idris Tutorial Version 1.3.1Nat -> Type) -> -- Property to show (P Z) -> -- Base case ((k : Nat) -> P k -> P (S k)) -> -- Inductive step (x : Nat) -> -- Show for all x P x nat_induction P p_Z p_S Z = p_Z nat_induction P p_Z p_S plus_ind n m = nat_induction (\x => Nat) m -- Base case, plus_ind Z m (\k, k_rec => S k_rec) -- Inductive step plus_ind (S k) m -- where k_rec = plus_ind k m n T o p r ov e t h at plus n m = plus m n0 码力 | 230 页 | 1.24 MB | 1 年前3
The Idris Tutorial Version 1.0Nat -> Type) -> -- Property to show (P Z) -> -- Base case ((k : Nat) -> P k -> P (S k)) -> -- Inductive step (x : Nat) -> -- Show for all x P x nat_induction P p_Z p_S Z = p_Z nat_induction P p_Z p_S plus_ind n m = nat_induction (\x => Nat) m -- Base case, plus_ind Z m (\k, k_rec => S k_rec) -- Inductive step plus_ind (S k) m -- where k_rec = plus_ind k m n T o p r ov e t h at plus n m = plus m n0 码力 | 223 页 | 1.21 MB | 1 年前3
The Idris Tutorial Version 1.3.0Nat -> Type) -> -- Property to show (P Z) -> -- Base case ((k : Nat) -> P k -> P (S k)) -> -- Inductive step (x : Nat) -> -- Show for all x P x nat_induction P p_Z p_S Z = p_Z nat_induction P p_Z p_S plus_ind n m = nat_induction (\x => Nat) m -- Base case, plus_ind Z m (\k, k_rec => S k_rec) -- Inductive step plus_ind (S k) m -- where k_rec = plus_ind k m n T o p r ov e t h at plus n m = plus m n0 码力 | 229 页 | 1.24 MB | 1 年前3
The Idris Tutorial Version 2.3.0Nat -> Type) -> -- Property to show (P Z) -> -- Base case ((k : Nat) -> P k -> P (S k)) -> -- Inductive step (x : Nat) -> -- Show for all x P x nat_induction P p_Z p_S Z = p_Z nat_induction P p_Z p_S plus_ind n m = nat_induction (\x => Nat) m -- Base case, plus_ind Z m (\k, k_rec => S k_rec) -- Inductive step plus_ind (S k) m -- where k_rec = plus_ind k m n T o p r ov e t h at plus n m = plus m n0 码力 | 228 页 | 1.23 MB | 1 年前3
共 10 条
- 1













