Stream ingestion and pub/sub systems - CS 591 K1: Data Stream Processing and Analytics Spring 2020offset, a monotonically increasing sequence number • Within a partition, all messages are totally ordered but there is no ordering guarantee across partitions 28 29 Failure handling • The broker0 码力 | 33 页 | 700.14 KB | 1 年前3
pandas: powerful Python data analysis toolkit - 0.17.0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 894 29.3 Transferring R data sets into Python . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 894 29.4 Converting data: • Tabular data with heterogeneously-typed columns, as in an SQL table or Excel spreadsheet • Ordered and unordered (not necessarily fixed-frequency) time series data. • Arbitrary matrix data (homogeneously or heterogeneous) with row and column labels • Any other form of observational / statistical data sets. The data actually need not be labeled at all to be placed into a pandas data structure The two primary0 码力 | 1787 页 | 10.76 MB | 1 年前3
pandas: powerful Python data analysis toolkit - 0.15.1categories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 544 21.4 Ordered or not... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 755 28 rpy2 / R interface 757 28.1 Transferring R data sets into Python . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 757 28.2 Converting data: • Tabular data with heterogeneously-typed columns, as in an SQL table or Excel spreadsheet • Ordered and unordered (not necessarily fixed-frequency) time series data. • Arbitrary matrix data (homogeneously0 码力 | 1557 页 | 9.10 MB | 1 年前3
pandas: powerful Python data analysis toolkit - 0.15. . . . . . . . . . . . . . . . . . . . 769 28 rpy2 / R interface 771 28.1 Transferring R data sets into Python . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 771 28.2 Converting data: • Tabular data with heterogeneously-typed columns, as in an SQL table or Excel spreadsheet • Ordered and unordered (not necessarily fixed-frequency) time series data. • Arbitrary matrix data (homogeneously or heterogeneous) with row and column labels • Any other form of observational / statistical data sets. The data actually need not be labeled at all to be placed into a pandas data structure The two primary0 码力 | 1579 页 | 9.15 MB | 1 年前3
pandas: powerful Python data analysis toolkit - 0.13.1. . . . . . . . . . . . . . . . . . . . 560 24 rpy2 / R interface 561 24.1 Transferring R data sets into Python . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 561 24.2 Converting data: • Tabular data with heterogeneously-typed columns, as in an SQL table or Excel spreadsheet • Ordered and unordered (not necessarily fixed-frequency) time series data. • Arbitrary matrix data (homogeneously or heterogeneous) with row and column labels • Any other form of observational / statistical data sets. The data actually need not be labeled at all to be placed into a pandas data structure The two primary0 码力 | 1219 页 | 4.81 MB | 1 年前3
pandas: powerful Python data analysis toolkit - 0.19.0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 448 10.4.7 Combining overlapping data sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 449 10.4.8 General DataFrame Combine handling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 668 17.9.3 Grouping with ordered factors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 668 17.9.4 Grouping with . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 701 18.3.1 Merging Ordered Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 701 18.3.2 Merging0 码力 | 1937 页 | 12.03 MB | 1 年前3
pandas: powerful Python data analysis toolkit - 0.19.1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 450 10.4.7 Combining overlapping data sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 451 10.4.8 General DataFrame Combine handling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 670 17.9.3 Grouping with ordered factors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 670 17.9.4 Grouping with . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 703 18.3.1 Merging Ordered Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 703 18.3.2 Merging0 码力 | 1943 页 | 12.06 MB | 1 年前3
pandas: powerful Python data analysis toolkit - 0.20.3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 500 9.4.7 Combining overlapping data sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 501 9.4.8 General DataFrame Combine handling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 747 16.9.3 Grouping with ordered factors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 747 16.9.4 Grouping with . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 786 17.3.1 Merging Ordered Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 786 17.3.2 Merging0 码力 | 2045 页 | 9.18 MB | 1 年前3
pandas: powerful Python data analysis toolkit - 0.20.2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 498 9.4.7 Combining overlapping data sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 499 9.4.8 General DataFrame Combine handling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 745 16.9.3 Grouping with ordered factors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 745 16.9.4 Grouping with . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 783 17.3.1 Merging Ordered Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 783 17.3.2 Merging0 码力 | 1907 页 | 7.83 MB | 1 年前3
pandas: powerful Python data analysis toolkit - 0.14.0. . . . . . . . . . . . . . . . . . . . 620 24 rpy2 / R interface 621 24.1 Transferring R data sets into Python . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 621 24.2 Converting data: • Tabular data with heterogeneously-typed columns, as in an SQL table or Excel spreadsheet • Ordered and unordered (not necessarily fixed-frequency) time series data. • Arbitrary matrix data (homogeneously or heterogeneous) with row and column labels • Any other form of observational / statistical data sets. The data actually need not be labeled at all to be placed into a pandas data structure The two primary0 码力 | 1349 页 | 7.67 MB | 1 年前3
共 232 条
- 1
- 2
- 3
- 4
- 5
- 6
- 24













