pandas: powerful Python data analysis toolkit - 0.24.0Localization of nonexistent times will raise an error by default. In [2]: dti.tz_localize('Europe/Warsaw') NonExistentTimeError: 2015-03-29 02:30:00 Transform nonexistent times to NaT or shift the times 03:30:00', '2015-03-29 04:30:00'], dtype='datetime64[ns]', freq='H') In [455]: dti.tz_localize('Europe/Warsaw', nonexistent='shift_forward') \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ 03:30:00+02:00', '2015-03-29 04:30:00+02:00'], dtype='datetime64[ns, Europe/Warsaw]', freq='H') In [456]: dti.tz_localize('Europe/Warsaw', nonexistent='shift_backward') \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\0 码力 | 2973 页 | 9.90 MB | 1 年前3
pandas: powerful Python data analysis toolkit - 1.0.0Localization of nonexistent times will raise an error by default. In [2]: dti.tz_localize('Europe/Warsaw') NonExistentTimeError: 2015-03-29 02:30:00 Transform nonexistent times to NaT or shift the times tz_localize('Europe/Warsaw', nonexistent='shift_forward') Out[454]: DatetimeIndex(['2015-03-29 03:00:00+02:00', '2015-03-29 03:30:00+02:00', '2015-03-29 04:30:00+02:00'], dtype='datetime64[ns, Europe/Warsaw]', freq='H') freq='H') In [455]: dti.tz_localize('Europe/Warsaw', nonexistent='shift_backward') Out[455]: DatetimeIndex(['2015-03-29 01:59:59.999999999+01:00', '2015-03-29 03:30:00+02:00', '2015-03-29 04:30:00+02:00']0 码力 | 3015 页 | 10.78 MB | 1 年前3
pandas: powerful Python data analysis toolkit - 0.25.0Localization of nonexistent times will raise an error by default. In [2]: dti.tz_localize('Europe/Warsaw') NonExistentTimeError: 2015-03-29 02:30:00 Transform nonexistent times to NaT or shift the times 03:30:00', '2015-03-29 04:30:00'], dtype='datetime64[ns]', freq='H') In [454]: dti.tz_localize('Europe/Warsaw', nonexistent='shift_forward') \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ 03:30:00+02:00', '2015-03-29 04:30:00+02:00'], dtype='datetime64[ns, Europe/Warsaw]', freq='H') In [455]: dti.tz_localize('Europe/Warsaw', nonexistent='shift_backward') \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\0 码力 | 2827 页 | 9.62 MB | 1 年前3
pandas: powerful Python data analysis toolkit - 0.25.1Localization of nonexistent times will raise an error by default. In [2]: dti.tz_localize('Europe/Warsaw') NonExistentTimeError: 2015-03-29 02:30:00 Transform nonexistent times to NaT or shift the times 03:30:00', '2015-03-29 04:30:00'], dtype='datetime64[ns]', freq='H') In [454]: dti.tz_localize('Europe/Warsaw', nonexistent='shift_forward') \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ 03:30:00+02:00', '2015-03-29 04:30:00+02:00'], dtype='datetime64[ns, Europe/Warsaw]', freq='H') In [455]: dti.tz_localize('Europe/Warsaw', nonexistent='shift_backward') \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\0 码力 | 2833 页 | 9.65 MB | 1 年前3
pandas: powerful Python data analysis toolkit - 1.0Localization of nonexistent times will raise an error by default. In [2]: dti.tz_localize('Europe/Warsaw') NonExistentTimeError: 2015-03-29 02:30:00 Transform nonexistent times to NaT or shift the times tz_localize('Europe/Warsaw', nonexistent='shift_forward') Out[454]: DatetimeIndex(['2015-03-29 03:00:00+02:00', '2015-03-29 03:30:00+02:00', '2015-03-29 04:30:00+02:00'], dtype='datetime64[ns, Europe/Warsaw]', freq='H') freq='H') In [455]: dti.tz_localize('Europe/Warsaw', nonexistent='shift_backward') Out[455]: DatetimeIndex(['2015-03-29 01:59:59.999999999+01:00', '2015-03-29 03:30:00+02:00', '2015-03-29 04:30:00+02:00']0 码力 | 3091 页 | 10.16 MB | 1 年前3
pandas: powerful Python data analysis toolkit - 1.0.4Localization of nonexistent times will raise an error by default. In [2]: dti.tz_localize('Europe/Warsaw') NonExistentTimeError: 2015-03-29 02:30:00 Transform nonexistent times to NaT or shift the times tz_localize('Europe/Warsaw', nonexistent='shift_forward') Out[454]: DatetimeIndex(['2015-03-29 03:00:00+02:00', '2015-03-29 03:30:00+02:00', '2015-03-29 04:30:00+02:00'], dtype='datetime64[ns, Europe/Warsaw]', freq='H') freq='H') In [455]: dti.tz_localize('Europe/Warsaw', nonexistent='shift_backward') Out[455]: DatetimeIndex(['2015-03-29 01:59:59.999999999+01:00', '2015-03-29 03:30:00+02:00', '2015-03-29 04:30:00+02:00']0 码力 | 3081 页 | 10.24 MB | 1 年前3
pandas: powerful Python data analysis toolkit -1.0.3Localization of nonexistent times will raise an error by default. In [2]: dti.tz_localize('Europe/Warsaw') NonExistentTimeError: 2015-03-29 02:30:00 Transform nonexistent times to NaT or shift the times tz_localize('Europe/Warsaw', nonexistent='shift_forward') Out[454]: DatetimeIndex(['2015-03-29 03:00:00+02:00', '2015-03-29 03:30:00+02:00', '2015-03-29 04:30:00+02:00'], dtype='datetime64[ns, Europe/Warsaw]', freq='H') freq='H') In [455]: dti.tz_localize('Europe/Warsaw', nonexistent='shift_backward') Out[455]: DatetimeIndex(['2015-03-29 01:59:59.999999999+01:00', '2015-03-29 03:30:00+02:00', '2015-03-29 04:30:00+02:00']0 码力 | 3071 页 | 10.10 MB | 1 年前3
pandas: powerful Python data analysis toolkit - 1.1.1Localization of nonexistent times will raise an error by default. In [2]: dti.tz_localize('Europe/Warsaw') NonExistentTimeError: 2015-03-29 02:30:00 Transform nonexistent times to NaT or shift the times tz_localize('Europe/Warsaw', nonexistent='shift_forward') Out[476]: DatetimeIndex(['2015-03-29 03:00:00+02:00', '2015-03-29 03:30:00+02:00', '2015-03-29 04:30:00+02:00'], dtype='datetime64[ns, Europe/Warsaw]', freq=None) freq=None) In [477]: dti.tz_localize('Europe/Warsaw', nonexistent='shift_backward') Out[477]: DatetimeIndex(['2015-03-29 01:59:59.999999999+01:00', '2015-03-29 03:30:00+02:00', '2015-03-29 04:30:00+02:00']0 码力 | 3231 页 | 10.87 MB | 1 年前3
pandas: powerful Python data analysis toolkit - 1.1.0Localization of nonexistent times will raise an error by default. In [2]: dti.tz_localize('Europe/Warsaw') NonExistentTimeError: 2015-03-29 02:30:00 Transform nonexistent times to NaT or shift the times tz_localize('Europe/Warsaw', nonexistent='shift_forward') Out[476]: DatetimeIndex(['2015-03-29 03:00:00+02:00', '2015-03-29 03:30:00+02:00', '2015-03-29 04:30:00+02:00'], dtype='datetime64[ns, Europe/Warsaw]', freq=None) freq=None) In [477]: dti.tz_localize('Europe/Warsaw', nonexistent='shift_backward') Out[477]: DatetimeIndex(['2015-03-29 01:59:59.999999999+01:00', '2015-03-29 03:30:00+02:00', '2015-03-29 04:30:00+02:00']0 码力 | 3229 页 | 10.87 MB | 1 年前3
pandas: powerful Python data analysis toolkit - 1.2.3Localization of nonexistent times will raise an error by default. In [2]: dti.tz_localize('Europe/Warsaw') NonExistentTimeError: 2015-03-29 02:30:00 Transform nonexistent times to NaT or shift the times tz_localize("Europe/Warsaw", nonexistent="shift_forward") Out[476]: DatetimeIndex(['2015-03-29 03:00:00+02:00', '2015-03-29 03:30:00+02:00', '2015-03-29 04:30:00+02:00'], dtype='datetime64[ns, Europe/Warsaw]', freq=None) freq=None) In [477]: dti.tz_localize("Europe/Warsaw", nonexistent="shift_backward") Out[477]: DatetimeIndex(['2015-03-29 01:59:59.999999999+01:00', '2015-03-29 03:30:00+02:00', '2015-03-29 04:30:00+02:00']0 码力 | 3323 页 | 12.74 MB | 1 年前3
共 21 条
- 1
- 2
- 3













