积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部云计算&大数据(298)VirtualBox(113)Apache Kyuubi(44)Pandas(32)机器学习(21)Apache Flink(15)Istio(13)Kubernetes(11)rancher(8)OpenShift(7)

语言

全部英语(261)中文(简体)(29)英语(7)中文(繁体)(1)

格式

全部PDF文档 PDF(273)其他文档 其他(24)PPT文档 PPT(1)
 
本次搜索耗时 0.195 秒,为您找到相关结果约 298 个.
  • 全部
  • 云计算&大数据
  • VirtualBox
  • Apache Kyuubi
  • Pandas
  • 机器学习
  • Apache Flink
  • Istio
  • Kubernetes
  • rancher
  • OpenShift
  • 全部
  • 英语
  • 中文(简体)
  • 英语
  • 中文(繁体)
  • 全部
  • PDF文档 PDF
  • 其他文档 其他
  • PPT文档 PPT
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 pandas: powerful Python data analysis toolkit - 0.15

    Flexible reshaping and pivoting of data sets • Hierarchical labeling of axes (possible to have multiple labels per tick) • Robust IO tools for loading data from flat files (CSV and delimited), Excel scientific research environments. For data scientists, working with data is typically divided into multiple stages: munging and cleaning data, analyzing / modeling it, then organizing the results of the analysis applied on __enter__ (GH8514) • Bug in resample that causes a ValueError when resampling across multiple days and the last offset is not calcu- lated from the start of the range (GH8683) • Bug where DataFrame
    0 码力 | 1579 页 | 9.15 MB | 1 年前
    3
  • pdf文档 pandas: powerful Python data analysis toolkit - 0.15.1

    Flexible reshaping and pivoting of data sets • Hierarchical labeling of axes (possible to have multiple labels per tick) • Robust IO tools for loading data from flat files (CSV and delimited), Excel scientific research environments. For data scientists, working with data is typically divided into multiple stages: munging and cleaning data, analyzing / modeling it, then organizing the results of the analysis than NaN (GH7900) • Bug in ewmstd(), ewmvol(), ewmvar(), and ewmcov() calculation of de-biasing factors when bias=False (the default). Previously an incorrect constant factor was used, based on adjust=True
    0 码力 | 1557 页 | 9.10 MB | 1 年前
    3
  • pdf文档 keras tutorial

    extensible API.  Minimal structure - easy to achieve the result without any frills.  It supports multiple platforms and backends.  It is user friendly framework which runs on both CPU and GPU.  Network (ANN) was invented by psychologist Frank Rosenblatt, in the year of 1958. ANNs are made up of multiple nodes which is similar to neurons. Nodes are tightly interconnected and organized into different represented as below: 4. Keras ― Overview of Deep learning Keras 12 Here,  Multiple input along with weight represents dendrites.  Sum of input along with activation function represents
    0 码力 | 98 页 | 1.57 MB | 1 年前
    3
  • pdf文档 Istio Security Assessment

    they are designed to provide. Four consultants over a period of five weeks along with the help of multiple shadows (provided at no additional cost) worked on the project in tight partnership with Google’s risk, application’s exposure and user population, technical difficulty of exploitation, and other factors. For an explanation of NCC Group’s risk rating and finding categorization, see Appendix A on page risk, application’s exposure and user population, technical difficulty of exploitation, and other factors. The risk rating is NCC Group’s recommended prioritization for addressing findings. Every organization
    0 码力 | 51 页 | 849.66 KB | 1 年前
    3
  • pdf文档 Lecture 1: Overview

    (Contd.) Feng Li (SDU) Overview September 6, 2023 30 / 57 Unsupervised Learning: Discovering Latent Factors Dimensionality reduction When dealing with high dimensional data, it is often useful to reduce dimensional, there may only be a small number of degrees of variability, corresponding to latent factors Feng Li (SDU) Overview September 6, 2023 31 / 57 Unsupervised Learning: Discovering Graph Structures probabilities can be used to infer uncertainty. A one-vs-one SVM approach can be used to tackle multiple classes. Feng Li (SDU) Overview September 6, 2023 47 / 57 Parametric vs Non-Parametric Models
    0 码力 | 57 页 | 2.41 MB | 1 年前
    3
  • pdf文档 pandas: powerful Python data analysis toolkit - 0.17.0

    Flexible reshaping and pivoting of data sets • Hierarchical labeling of axes (possible to have multiple labels per tick) • Robust IO tools for loading data from flat files (CSV and delimited), Excel scientific research environments. For data scientists, working with data is typically divided into multiple stages: munging and cleaning data, analyzing / modeling it, then organizing the results of the analysis keyword values. (GH10633) • Bug in DataFrame.plot raises ValueError when color name is specified by multiple characters (GH10387) • Bug in Index construction with a mixed list of tuples (GH10697) • Bug in
    0 码力 | 1787 页 | 10.76 MB | 1 年前
    3
  • pdf文档 pandas: powerful Python data analysis toolkit - 0.13.1

    Flexible reshaping and pivoting of data sets • Hierarchical labeling of axes (possible to have multiple labels per tick) • Robust IO tools for loading data from flat files (CSV and delimited), Excel scientific research environments. For data scientists, working with data is typically divided into multiple stages: munging and cleaning data, analyzing / modeling it, then organizing the results of the analysis iterator=boolean, and chunksize=number_in_a_chunk are provided to sup- port iteration on select and select_as_multiple (GH3076) • You can now select timestamps from an unordered timeseries similarly to an ordered timeseries
    0 码力 | 1219 页 | 4.81 MB | 1 年前
    3
  • pdf文档 pandas: powerful Python data analysis toolkit - 0.7.2

    Flexible reshaping and pivoting of data sets • Hierarchical labeling of axes (possible to have multiple labels per tick) • Robust IO tools for loading data from flat files (CSV and delimited), Excel scientific research environments. For data scientists, working with data is typically divided into multiple stages: munging and CONTENTS 1 pandas: powerful Python data analysis toolkit, Release 0.7.2 cleaning attributes on GroupBy (GH882) • Can pass dict of values to DataFrame.fillna (GH661) • Can select multiple hierarchical groups by passing list of values in .ix (GH134) • Add axis option to DataFrame.fillna
    0 码力 | 283 页 | 1.45 MB | 1 年前
    3
  • pdf文档 pandas: powerful Python data analysis toolkit - 0.7.1

    Flexible reshaping and pivoting of data sets • Hierarchical labeling of axes (possible to have multiple labels per tick) • Robust IO tools for loading data from flat files (CSV and delimited), Excel scientific research environments. For data scientists, working with data is typically divided into multiple stages: munging and CONTENTS 1 pandas: powerful Python data analysis toolkit, Release 0.7.1 cleaning append and DataFrame.append (GH468, GH479, GH273) • Can pass multiple DataFrames to DataFrame.append to concatenate (stack) and multiple Series to Series.append too • Can pass list of dicts (e.g., a
    0 码力 | 281 页 | 1.45 MB | 1 年前
    3
  • pdf文档 pandas: powerful Python data analysis toolkit - 0.7.3

    Flexible reshaping and pivoting of data sets • Hierarchical labeling of axes (possible to have multiple labels per tick) • Robust IO tools for loading data from flat files (CSV and delimited), Excel scientific research environments. For data scientists, working with data is typically divided into multiple stages: munging and CONTENTS 1 pandas: powerful Python data analysis toolkit, Release 0.7.3 cleaning attributes on GroupBy (GH882) • Can pass dict of values to DataFrame.fillna (GH661) • Can select multiple hierarchical groups by passing list of values in .ix (GH134) • Add axis option to DataFrame.fillna
    0 码力 | 297 页 | 1.92 MB | 1 年前
    3
共 298 条
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 30
前往
页
相关搜索词
pandaspowerfulPythondataanalysistoolkit0.15kerastutorialIstioSecurityAssessmentLectureOverview0.170.130.7
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩