积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部云计算&大数据(46)Pandas(32)OpenShift(7)机器学习(4)Apache Flink(2)Kubernetes(1)

语言

全部英语(37)中文(简体)(9)

格式

全部PDF文档 PDF(46)
 
本次搜索耗时 0.298 秒,为您找到相关结果约 46 个.
  • 全部
  • 云计算&大数据
  • Pandas
  • OpenShift
  • 机器学习
  • Apache Flink
  • Kubernetes
  • 全部
  • 英语
  • 中文(简体)
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 Cardinality and frequency estimation - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    least r 0s among k elements is (1 − 2−r)k We know that (1 − ϵ)1/ϵ = 1/e For ϵ = 2−r → (1 − 2−r)k = e−k2−r 8 ??? Vasiliki Kalavri | Boston University 2020 The probability of not seeing a tail with at elements is (1 − 2−r)k We know that (1 − ϵ)1/ϵ = 1/e For ϵ = 2−r → (1 − 2−r)k = e−k2−r • If k ≫ 2r : k 2r → 0 and e−k2−r → 1 8 ??? Vasiliki Kalavri | Boston University 2020 The probability of not seeing We know that (1 − ϵ)1/ϵ = 1/e For ϵ = 2−r → (1 − 2−r)k = e−k2−r • If k ≫ 2r : k 2r → 0 and e−k2−r → 1 • If k ≪ 2r : k 2r → ∞ and e−k2−r → 0 8 ??? Vasiliki Kalavri | Boston University 2020 The
    0 码力 | 69 页 | 630.01 KB | 1 年前
    3
  • pdf文档 pandas: powerful Python data analysis toolkit - 0.25

    DataFrame({'key': ['K0', 'K1', 'K2', 'K3'], ....: 'A': ['A0', 'A1', 'A2', 'A3'], ....: 'B': ['B0', 'B1', 'B2', 'B3']}) ....: In [40]: right = pd.DataFrame({'key': ['K0', 'K1', 'K2', 'K3'], ....: 'C': ['C0' intersection), since how='inner' by default. In [42]: left = pd.DataFrame({'key1': ['K0', 'K0', 'K1', 'K2'], ....: 'key2': ['K0', 'K1', 'K0', 'K1'], ....: 'A': ['A0', 'A1', 'A2', 'A3'], ....: 'B': ['B0' 0.25.3 (continued from previous page) In [43]: right = pd.DataFrame({'key1': ['K0', 'K1', 'K1', 'K2'], ....: 'key2': ['K0', 'K0', 'K0', 'K0'], ....: 'C': ['C0', 'C1', 'C2', 'C3'], ....: 'D': ['D0'
    0 码力 | 698 页 | 4.91 MB | 1 年前
    3
  • pdf文档 Lecture 6: Support Vector Machine

    Let K1 and K2 be two kernel functions then the followings are as well: Direct sum: K(x, z) = K1(x, z) + K2(x, z) Scalar product: K(x, z) = αK1(x, z) Direct product: K(x, z) = K1(x, z)K2(x, z) Kernels
    0 码力 | 82 页 | 773.97 KB | 1 年前
    3
  • pdf文档 Lecture Notes on Support Vector Machine

    Let K1 and K2 be two kernel functions, then the following rules hold: • Direct sum: K(x, z) = K1(x, z) + K2(x, z) • Scalar product: K(x, z) = αK1(x, z) • Direct product: K(x, z) = K1(x, z)K2(x, z) Kernels
    0 码力 | 18 页 | 509.37 KB | 1 年前
    3
  • pdf文档 Lecture Notes on Linear Regression

    gradient has its magnitude less than or equal to a predefined threshold (say "), i.e. krf(x)k2  " where k · k2 is `2 norm, such that the values of the objective function di↵er very slightly in successive
    0 码力 | 6 页 | 455.98 KB | 1 年前
    3
  • pdf文档 Streaming optimizations - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    Emit(key, AsString(result)); MapReduce combiners example: URL access frequency (k2, list(v2)) → list(v2) (k1, v1) → list(k2, v2) map() reduce() 25 ??? Vasiliki Kalavri | Boston University 2020 MapReduce
    0 码力 | 54 页 | 2.83 MB | 1 年前
    3
  • pdf文档 动手学深度学习 v2.0

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 497 12 计算性能 503 12.1 编译器和解释器 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 503 12.1.1 多输入多输出通道可以用来扩展卷积层的模型。 • 当以每像素为基础应用时,1 × 1卷积层相当于全连接层。 • 1 × 1卷积层通常用于调整网络层的通道数量和控制模型复杂性。 练习 1. 假设我们有两个卷积核,大小分别为k1和k2(中间没有非线性激活函数)。 1. 证明运算可以用单次卷积来表示。 2. 这个等效的单个卷积核的维数是多少呢? 3. 反之亦然吗? 2. 假设输入为ci × h × w,卷积核大小为co × 讨论影响计算性能的主要因素:命令式编程、符号编程、异步计算、自动并行和多GPU计算。通过学习本章, 对于前几章中实现的那些模型,可以进一步提高它们的计算性能。例如,我们可以在不影响准确性的前提下, 大大减少训练时间。 12.1 编译器和解释器 目前为止,本书主要关注的是命令式编程(imperative programming)。命令式编程使用诸如print、“+” 和if之类的语句来更改程序的状态。考虑下面这段简单的命令式程序:
    0 码力 | 797 页 | 29.45 MB | 1 年前
    3
  • pdf文档 pandas: powerful Python data analysis toolkit - 1.0.0

    DataFrame({'key': ['K0', 'K1', 'K2', 'K3'], ....: 'A': ['A0', 'A1', 'A2', 'A3'], ....: 'B': ['B0', 'B1', 'B2', 'B3']}) ....: In [40]: right = pd.DataFrame({'key': ['K0', 'K1', 'K2', 'K3'], ....: 'C': ['C0' intersection), since how='inner' by default. In [42]: left = pd.DataFrame({'key1': ['K0', 'K0', 'K1', 'K2'], ....: 'key2': ['K0', 'K1', 'K0', 'K1'], ....: 'A': ['A0', 'A1', 'A2', 'A3'], ....: 'B': ['B0' Release 1.0.0 (continued from previous page) In [43]: right = pd.DataFrame({'key1': ['K0', 'K1', 'K1', 'K2'], ....: 'key2': ['K0', 'K0', 'K0', 'K0'], ....: 'C': ['C0', 'C1', 'C2', 'C3'], ....: 'D': ['D0'
    0 码力 | 3015 页 | 10.78 MB | 1 年前
    3
  • pdf文档 pandas: powerful Python data analysis toolkit - 0.25.0

    DataFrame({'key': ['K0', 'K1', 'K2', 'K3'], ....: 'A': ['A0', 'A1', 'A2', 'A3'], ....: 'B': ['B0', 'B1', 'B2', 'B3']}) ....: In [40]: right = pd.DataFrame({'key': ['K0', 'K1', 'K2', 'K3'], ....: 'C': ['C0' intersection), since how='inner' by default. In [42]: left = pd.DataFrame({'key1': ['K0', 'K0', 'K1', 'K2'], ....: 'key2': ['K0', 'K1', 'K0', 'K1'], ....: 'A': ['A0', 'A1', 'A2', 'A3'], ....: 'B': ['B0' 0.25.0 (continued from previous page) In [43]: right = pd.DataFrame({'key1': ['K0', 'K1', 'K1', 'K2'], ....: 'key2': ['K0', 'K0', 'K0', 'K0'], ....: 'C': ['C0', 'C1', 'C2', 'C3'], ....: 'D': ['D0'
    0 码力 | 2827 页 | 9.62 MB | 1 年前
    3
  • pdf文档 pandas: powerful Python data analysis toolkit - 0.25.1

    DataFrame({'key': ['K0', 'K1', 'K2', 'K3'], ....: 'A': ['A0', 'A1', 'A2', 'A3'], ....: 'B': ['B0', 'B1', 'B2', 'B3']}) ....: In [40]: right = pd.DataFrame({'key': ['K0', 'K1', 'K2', 'K3'], ....: 'C': ['C0' intersection), since how='inner' by default. In [42]: left = pd.DataFrame({'key1': ['K0', 'K0', 'K1', 'K2'], ....: 'key2': ['K0', 'K1', 'K0', 'K1'], ....: 'A': ['A0', 'A1', 'A2', 'A3'], ....: 'B': ['B0' 0.25.1 (continued from previous page) In [43]: right = pd.DataFrame({'key1': ['K0', 'K1', 'K1', 'K2'], ....: 'key2': ['K0', 'K0', 'K0', 'K0'], ....: 'C': ['C0', 'C1', 'C2', 'C3'], ....: 'D': ['D0'
    0 码力 | 2833 页 | 9.65 MB | 1 年前
    3
共 46 条
  • 1
  • 2
  • 3
  • 4
  • 5
前往
页
相关搜索词
CardinalityandfrequencyestimationCS591K1DataStreamProcessingAnalyticsSpring2020pandaspowerfulPythondataanalysistoolkit0.25LectureSupportVectorMachineNotesonLinearRegressionStreamingoptimizations动手深度学习v21.0
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩