积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部综合其他(8)人工智能(8)

语言

全部英语(5)kor(1)ro(1)中文(简体)(1)

格式

全部PDF文档 PDF(8)
 
本次搜索耗时 0.022 秒,为您找到相关结果约 8 个.
  • 全部
  • 综合其他
  • 人工智能
  • 全部
  • 英语
  • kor
  • ro
  • 中文(简体)
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 Google 《Prompt Engineering v7》

    A few-shot prompt 7 provides multiple examples to the model. This approach shows the model a pattern that it needs to follow. The idea is similar to one-shot, but multiple examples of the desired pattern Engineering February 2025 16 The number of examples you need for few-shot prompting depends on a few factors, including the complexity of the task, the quality of the examples, and the capabilities of the following steps: 1. Generating diverse reasoning paths: The LLM is provided with the same prompt multiple times. A high temperature setting encourages the model to generate different reasoning paths and
    0 码力 | 68 页 | 6.50 MB | 6 月前
    3
  • pdf文档 OpenAI 《A practical guide to building agents》

    results if asked.", As the number of required tools increases, consider splitting tasks across multiple agents 
 (see Orchestration). 10 A practical guide to building agents Configuring instructions executes workflows in a loop 02 Multi-agent systems, where workflow execution is distributed across multiple coordinated agents Let’s explore each pattern in detail. 13 A practical guide to building agents maintenance. Each new tool expands its capabilities without prematurely forcing you to orchestrate multiple agents. Tools Guardrails Hooks Instructions Agent Input Output Every orchestration approach needs
    0 码力 | 34 页 | 7.00 MB | 6 月前
    3
  • pdf文档 DeepSeek-V2: A Strong, Economical, and Efficient Mixture-of-Experts Language Model

    communication costs. When expert parallelism is employed, the routed experts will be distributed across multiple devices. For each token, its MoE-related communication frequency is proportional to the number of additional RMS Norm layers after the compressed latent vectors, and multiply additional scaling factors at the width bottlenecks (i.e., the compressed latent vectors and the intermediate hidden states are categorized and listed as follows, where underlined benchmarks are in Chinese: Multi-subject multiple-choice datasets include MMLU (Hendrycks et al., 2020), C-Eval (Huang et al., 2023), and CMMLU (Li
    0 码力 | 52 页 | 1.23 MB | 1 年前
    3
  • pdf文档 清华大学 DeepSeek+DeepResearch 让科研像聊天一样简单

    Murdoch and Oaten, 1975). 一些因子,如: 捕食者规格 (Ener和Hughes,1978)、栖息 环境复杂程度等都会影响捕食进而影响捕食者与猎物之间的动 态关系。 Some factors, such as predator size (Elner andHughes, 1978) and habitat complexity, can affectpredation and subsequently
    0 码力 | 85 页 | 8.31 MB | 8 月前
    3
  • pdf文档 Trends Artificial Intelligence

    Timeline – 2023-2025, per Stanford University *Multimodal = AI that can understand and process multiple data types (e.g., text, images, audio) together. **Open-source = AI models and tools made publicly provider who can gate access or raise prices, developers are distributing their efforts across multiple ecosystems. This plurality of options is empowering a new wave of builders to choose the best-fit per CoreWeave Source: CoreWeave (as of 5/25) We've delivered an outstanding start to 2025 on multiple fronts. Our strong first quarter financial performance caps a string of milestones including
    0 码力 | 340 页 | 12.14 MB | 5 月前
    3
  • pdf文档 Bring Your Own Codegen to TVM

    Let TVM Be the Compiler of Your Chip Your chip can run any models Your compiler (TVM) supports multiple frontends (e.g., TensorFlow, PyTorch, MXNet) Non Maximum Suppression ResNet-50 Dense Your (working on an algorithm to merge annotated ops) Graph-level annotation ● High flexibility and allow multiple ops in a subgraph 👍 ● Relatively hard to implement 👎© 2019, Amazon Web Services, Inc. or its output What are not supported yet? ● Duplicated inputs optimization (e.g., reused parameters) ● Multiple outputs (e.g., batch normalization) ● Subgraph merging (e.g., conv2d + ReLU)© 2019, Amazon Web
    0 码力 | 19 页 | 504.69 KB | 5 月前
    3
  • pdf文档 OctoML OSS 2019 11 8

    W Open Source at OctoML ee We are big believers in the power of open source o 5S$ponsoring multiple employees to contribute to TVML. ee Today we'ltouch on a few of those contribution areas: o Core
    0 码力 | 16 页 | 1.77 MB | 5 月前
    3
  • pdf文档 XDNN TVM - Nov 2019

    ffe/Benchmark_README.md Two measurements we track: Latency & Throughput ˃ ML pipeline contains multiple stages, performance limited by slowest one ˃ Performance results based on Xilinx own runtime pipeline
    0 码力 | 16 页 | 3.35 MB | 5 月前
    3
共 8 条
  • 1
前往
页
相关搜索词
GooglePromptEngineeringv7OpenAIpracticalguidetobuildingagentsDeepSeekV2StrongEconomicalandEfficientMixtureofExpertsLanguageModel清华大学DeepResearch科研TrendsArtificialIntelligenceBringYourOwnCodegenTVMOctoMLOSS201911XDNNNov
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩