人工智能安全治理框架 1.0的标准接口、特性库和工具包,以及开发界面和执行平台可能存在逻辑缺陷、- 5 - 人工智能安全治理框架 漏洞等脆弱点,还可能被恶意植入后门,存在被触发和攻击利用的风险。 (b)算力安全风险。人工智能训练运行所依赖的算力基础设施,涉及多源、 泛在算力节点,不同类型计算资源,面临算力资源恶意消耗、算力层面风险跨 边界传递等风险。 (c)供应链安全风险。人工智能产业链呈现高度全球化分工协作格局。 但个别国 (b)用于违法犯罪活动的风险。人工智能可能被利用于涉恐、涉暴、涉赌、 涉毒等传统违法犯罪活动,包括传授违法犯罪技巧、隐匿违法犯罪行为、制作 违法犯罪工具等。 (c)两用物项和技术滥用风险。因不当使用或滥用人工智能两用物项和 技术,对国家安全、经济安全、公共卫生安全等带来严重风险。包括极大降低 非专家设计、合成、获取、使用核生化导武器的门槛;设计网络武器,通过自 动挖掘与利用漏洞等方式,对广泛潜在目标发起网络攻击。 策有重大影响时,做好解释说明预案。 (e)服务提供者应检查研发者提供的责任说明文件,确保责任链条可以 追溯到递归采用的人工智能模型。 (f)服务提供者应提高人工智能风险防范意识,建立健全实时风险监控 管理机制,持续跟踪运行中安全风险。 (g)服务提供者应评估人工智能产品与服务在面临故障、攻击等异常条 件下抵御或克服不利条件的能力,防范出现意外结果和行为错误,确保最低限 度有效功能。0 码力 | 20 页 | 3.79 MB | 1 月前3
清华大学 普通人如何抓住DeepSeek红利结构、内部系统以及行业情况。然而,公司的产品手册复杂,部门间的职责不清晰,内部系统操作繁琐,行业信 息量庞大,这些都让小李感到不知所措。他担心自己无法在短时间内快速上手,影响工作效率和表现。 以往的解决方式: • 依赖同事的口头介绍,容易遗漏重要信 息。 • 手动查阅厚重的产品手册和内部文档, 耗时较长。 • 参加多部门的培训,但信息量大,难以 消化。 • 通过网络搜索行业信息,但信息分散, 难以整合。 信息的准确性和全面性更高,减少了因信息不全而导致 的误解和错误。通过DeepSeek的数据分析功能,新员 工可以更深入地理解行业动态和公司运营,做出更明智 的决策。 成本更低: 减少了对培训资源的依赖,新员工可以通过DeepSeek 自主学习,降低培训成本。通过提高工作效率,减少了 人力资源的浪费,降低了整体运营成本。 场景3:日常客户沟通与问题反馈处理 常见问题: 与甲方客户的沟通效率低,信息不对称,导致响应不及时或错误 接入干洗店智能柜系统预约取件码 ✓ 生鲜平台比价后自动补货牛奶 ③ 会议准备: 自动提取上周销售数据生成可视化图表框架 调取历史报告模板进行语义重组 ④ 风险预警: 灶台计时器同步手机震动提醒 通勤路况实时监控(若堵车超15分钟触发备用方案) 技术红利: 时间利用率提升40%,晨间压力值降低65%,关键事务完成率100% 情景还原:7:15分,被幼儿园家长群消息惊醒,发现今天轮到自己带班级手工材料。同时想起丈夫出差前嘱咐的干洗店取0 码力 | 65 页 | 4.47 MB | 8 月前3
DeepSeek从入门到精通(20250204)发散性任务(如诗歌创作) 需要严格逻辑链的任务(如数学证明) 性能本质 专精于逻辑密度高的任务 擅长多样性高的任务 强弱判断 并非全面更强,仅在其训练目标领域显著优于通用模型 通用场景更灵活,但专项任务需依赖提示语补偿能力 • 例如:GPT-3、GPT-4(OpenAI),BERT(Google),主要用于语言生成、语言理解、文本分类、翻译 等任务。 快思慢想:效能兼顾 全局视野 概率预测(快速反应模型,如ChatGPT 响应速度快,算力成本低 慢速思考,算力成本高 运算原理 基于概率预测,通过大量数据训练来快速预测可能 的答案 基于链式思维(Chain-of-Thought),逐步推理 问题的每个步骤来得到答案 决策能力 依赖预设算法和规则进行决策 能够自主分析情况,实时做出决策 创造力 限于模式识别和优化,缺乏真正的创新能力 能够生成新的创意和解决方案,具备创新能力 人机互动能力 按照预设脚本响应,较难理解人类情感和意图 需求(因其已内化推理逻辑)。 • 无需逐步指导,模型自动生成结构化 推理过程(若强行拆解步骤,反而可 能限制其能力)。 • 需显式引导推理步骤(如通过CoT提 示),否则可能跳过关键逻辑。 • 依赖提示语补偿能力短板(如要求分 步思考、提供示例)。 关键原则 3 2 1 模型选择 • 优先根据任务类型而非模型热度选择(如数学任务选推理模型,创意任务选通用 模型)。 提示语设计0 码力 | 104 页 | 5.37 MB | 8 月前3
清华大学 DeepSeek 从入门到精通发散性任务(如诗歌创作) 需要严格逻辑链的任务(如数学证明) 性能本质 专精于逻辑密度高的任务 擅长多样性高的任务 强弱判断 并非全面更强,仅在其训练目标领域显著优于通用模型 通用场景更灵活,但专项任务需依赖提示语补偿能力 • 例如:GPT-3、GPT-4(OpenAI),BERT(Google),主要用于语言生成、语言理解、文本分类、翻译 等任务。 快思慢想:效能兼顾 全局视野 概率预测(快速反应模型,如ChatGPT 响应速度快,算力成本低 慢速思考,算力成本高 运算原理 基于概率预测,通过大量数据训练来快速预测可能 的答案 基于链式思维(Chain-of-Thought),逐步推理 问题的每个步骤来得到答案 决策能力 依赖预设算法和规则进行决策 能够自主分析情况,实时做出决策 创造力 限于模式识别和优化,缺乏真正的创新能力 能够生成新的创意和解决方案,具备创新能力 人机互动能力 按照预设脚本响应,较难理解人类情感和意图 需求(因其已内化推理逻辑)。 • 无需逐步指导,模型自动生成结构化 推理过程(若强行拆解步骤,反而可 能限制其能力)。 • 需显式引导推理步骤(如通过CoT提 示),否则可能跳过关键逻辑。 • 依赖提示语补偿能力短板(如要求分 步思考、提供示例)。 关键原则 3 2 1 模型选择 • 优先根据任务类型而非模型热度选择(如数学任务选推理模型,创意任务选通用 模型)。 提示语设计0 码力 | 103 页 | 5.40 MB | 9 月前3
清华大学 DeepSeek+DeepResearch 让科研像聊天一样简单预测交通拥堵,为城市规划提供决策支持。 • 交互式数据可视化:在商业智能和数据 分析领域,o3mini可以将多维数据以可视化 的方式呈现,并支持用户进行交互式分析。 • 实时数据可视化与预警:在实时监控和 数据分析中,o3mini可以实时将数据以可视 化的方式展示,并支持用户与数据进行交互。 二 要怎么做? 撰写文章标题指令 指令:我想让您担任学术期刊编辑,我将向您提供一份手稿摘要,您将向我提供 正 DeepSeek R1 的核心突破在于其通过强化学习驱动的推理能力。该 模型在训练过程中,通过强化学习技术,显著提升模型的推理能力, 使其在数学、编程和自然语言推理等任务上表现出色。 传统依赖: 大规模监督微调(SFT) 创新思路: 强化学习(RL)驱动 推理效率 • 长思维链支持:DeepSeek R1 支持长链推理,能够生成数万字的 思维链,显著提高复杂任务的推理准确性,其长链推理能力在数学、 多模块协同,逐步执行复杂任务 单输入文本生成输出,处理单一任务 研究能力 处理复杂学术、法律、市场研究,支持多轮分析 生成创意内容,提供建议,适度推理分析 输入输出格式 支持图像、PDF等多种格式输入输出 主要依赖文本输入输出 模块协作 多个模块协同工作(探索者、整合者、推理者等) 单一模型,无模块化协作 DeepResearch 探索者 整合者 思考者 表达者 技术协同:多步推理,快速输出 DeepResearch能迅速梳理海量文献,0 码力 | 85 页 | 8.31 MB | 8 月前3
开源中国 2023 大模型(LLM)技术报告LLM 技术报告 大语言模型(LLM) 技术作为人工智能领域的一项重要创 新在今年引起了广泛的关注。 LLM 是利用深度学习和大数据训练的人工智能系统,专门 设计来理解、生成和回应自然语言。这些模型通过分析大量 的文本数据来学习语言的结构和用法,从而能够执行各种语 言相关任务。以 GPT 系列为代表,LLM 以其在自然语言 处理领域的卓越表现,成为推动语言理解、生成和应用的引 擎。 LLM txtai 等。 25 / 32 LLM 的工具、平台和资源 另一个视角来看,在大模型繁荣发展的背后,少不了工 具和平台的发力,如 LLMOps 平台、大模型聚合平台 以及相关的开发工具,此外还有它们所依赖的最重要的 资源——算力。 在这些工具、平台和资源的有力支撑下,大模型才得以 一步一个台阶,引领全球开发者步入一个技术新时代。 算力 大模型聚合平台 LLMOps 开发 工具 26 / 320 码力 | 32 页 | 13.09 MB | 1 年前3
【周鸿祎清华演讲】DeepSeek给我们带来的创业机会-360周鸿祎-2025026· 销售 物 理 工 序 模 型 导 图 原料 废钢 烧结 球团 焦化 炼铁 炼钢 精炼 连铸 热轧 冷轧 销售 • 料场环境实时监控 • 人员越界安全监测 • 回转窑窑况智能分 析 • 原料无人天车吊装 控制 • 生产现场运输状态 监控 • 现场路线智能调度 • 智能化能源调度 • 料场智能调度 • 燃料水分视觉分析 • 多角度废钢图像 采集 • 废钢智能定级 • 生产现场动作远程控制 • 焦化现场生产安全态势 感知与预警 • 部署打滑预测分析 • 能源计划 • 炼焦煤分级调湿工艺稳 定协调控制 • 危险物识别 • 人员安全监测 • 高炉料面温度检测 • 高炉料面可视化监控 • 炉顶布料效果评定 • 远程换钎 • 中间产品无人天车吊装 控制 • 废品无人天车吊装控制 • 铁水质量预报 • 高炉温度分布 • 高炉燃料比监测 • 高炉精准出铁预测 • 高炉炉况诊断 • ·计算最佳工艺参数 • 炼钢工序物料属性检测 • ·精炼钢水温度连续测量 • 炼钢设备远程监控及故障 诊断 • ·转炉炉体缺陷检测 • 钢水液面检测 • 钢包水口位置定位 • 钢包顶升高度预测 • 钢包吊钩姿态监测 • 钢包温度远程智能监测 • 炼钢工序物料属性检测 • ·精炼钢水温度连续测量 • 炼钢设备远程监控及故障诊断 • 转炉炉体缺陷检测 • 钢水液面检测 • 钢包水口位置定位0 码力 | 76 页 | 5.02 MB | 6 月前3
DeepSeek图解10页PDF就是自然语言处理领域实现扩展规律的最好的网络结构。 2.2 Transformer 基础架构 LLM 依赖于 2017 年 Google 提出的 Transformer 模型,该架构相比传统的 RNN(递归神经网络)和 LSTM(长短时记忆网络)具有更高的训练效率和 更强的长距离依赖建模能力。Transformer 由多个关键组件组成:1. 自注意 力机制(Self-Attention) Encoding):在没有循环结构的情况下,帮助模型理解单词的顺 序信息。 Transformer 结构的优势 1. 高效的并行计算:摒弃循环结构,使计算速度大幅提升。 2. 更好的上下文理解:注意力机制可捕捉长文本中的远程依赖关系。 3. 良好的可扩展性:可适配更大规模模型训练,增强 AI 泛化能力。 教程作者:郭震,工作 8 年目前美国 AI 博士在读,公众号:郭震 AI,欢迎关注获取更多原创教程。资 料用心打磨且开源,是为了帮助更多人了解获取 知识,严禁拿此资料引流、出书、等形式的商业活动 3.4 总结 DeepSeek-R1 中间推理模型生成:通过推理导向的强化学习(Reasoning-Oriented RL), 直接生成高质量的推理数据(CoT 示例),减少人工标注依赖。通用强化学 习优化:基于帮助性和安全性奖励模型,优化推理与非推理任务表现,构建 通用性强的模型。最终,DeepSeek-R1 将 R1-Zero 的推理能力与通用强化 学习的适应能力相结合,0 码力 | 11 页 | 2.64 MB | 8 月前3
国家人工智能产业综合标准化体系建设指南(2024版)国人工智能产业高质量发展提供坚实的技术支撑。 到 2026 年,标准与产业科技创新的联动水平持续提升, 新制定国家标准和行业标准 50 项以上,引领人工智能产业 高质量发展的标准体系加快形成。开展标准宣贯和实施推广 的企业超过 1000 家,标准服务企业创新发展的成效更加凸 显。参与制定国际标准 20 项以上,促进人工智能产业全球 化发展。 坚持创新驱动。优化产业科技创新与标准化联动机制, 加快人工智能领域关键共性技术研究,推动先进适用的科技0 码力 | 13 页 | 701.84 KB | 1 年前3
TVM工具组caffe 前端有利于提高竞争力。 开源社区 存量的开源 caffe 网络模型众多,TVM 直接支持 caffe 让大家更方便尝试 caffe 资源。绝赞招聘中 当前进度 无 caffe 依赖 from_caffe 直接导入 caffe 模型文件,不需要预先安装 caffe 。 net 已测试网络:alexnet / densenet121 / inception v1 / inception0 码力 | 6 页 | 326.80 KB | 6 月前3
共 11 条
- 1
- 2













