Hello 算法 1.1.0 Java版本书部分放弃了编程语言的注释规范,以换取更加紧凑的内容排版。注释主要分为三种类型:标题注 释、内容注释、多行注释。 第 0 章 前言 hello‑algo.com 5 /* 标题注释,用于标注函数、类、测试样例等 */ // 内容注释,用于详解代码 /** * 多行 * 注释 */ 0.2.2 在动画图解中高效学习 相较于文字,视频和图片具有更高的信息密度和结构化程度,更易于理解。在本书中,重点和难点知识将主 ,每一轮将一张扑克牌从无序部分插入至有序部分,直至所有扑克牌都有序。 图 1‑2 扑克排序步骤 上述整理扑克牌的方法本质上是“插入排序”算法,它在处理小型数据集时非常高效。许多编程语言的排序 库函数中都有插入排序的身影。 例三:货币找零。假设我们在超市购买了 69 元的商品,给了收银员 100 元,则收银员需要找我们 31 元。他 会很自然地完成如图 1‑3 所示的思考。 1. 可选项是比 某个任务的控制结构。在迭代中,程序会在满足一定的条件下重复执行某段 代码,直到这个条件不再满足。 1. for 循环 for 循环是最常见的迭代形式之一,适合在预先知道迭代次数时使用。 以下函数基于 for 循环实现了求和 1 + 2 + ⋯ + ? ,求和结果使用变量 res 记录。需要注意的是,Python 中 range(a, b) 对应的区间是“左闭右开”的,对应的遍历范围为 ?0 码力 | 378 页 | 18.47 MB | 1 年前3
Hello 算法 1.0.0 Java版Python 为准,例如使用 None 来表示“空”。 ‧ 本书部分放弃了编程语言的注释规范,以换取更加紧凑的内容排版。注释主要分为三种类型:标题注 释、内容注释、多行注释。 /* 标题注释,用于标注函数、类、测试样例等 */ // 内容注释,用于详解代码 /** * 多行 第 0 章 前言 hello‑algo.com 5 * 注释 */ 0.2.2 在动画图解中高效学习 相较于文 ,每一轮将一张扑克牌从无序部分插入至有序部分,直至所有扑克牌都有序。 图 1‑2 扑克排序步骤 上述整理扑克牌的方法本质上是“插入排序”算法,它在处理小型数据集时非常高效。许多编程语言的排序 库函数中都有插入排序的身影。 例三:货币找零。假设我们在超市购买了 69 元的商品,给了收银员 100 元,则收银员需要找我们 31 元。他 会很自然地完成如图 1‑3 所示的思考。 1. 可选项是比 iteration」是一种重复执行某个任务的控制结构。在迭代中,程序会在满足一定的条件下重复执行某 段代码,直到这个条件不再满足。 1. for 循环 for 循环是最常见的迭代形式之一,适合在预先知道迭代次数时使用。 以下函数基于 for 循环实现了求和 1 + 2 + ⋯ + ? ,求和结果使用变量 res 记录。需要注意的是,Python 中 range(a, b) 对应的区间是“左闭右开”的,对应的遍历范围为 ?0 码力 | 376 页 | 17.59 MB | 1 年前3
Hello 算法 1.2.0 简体中文 Java 版本书部分放弃了编程语言的注释规范,以换取更加紧凑的内容排版。注释主要分为三种类型:标题注 释、内容注释、多行注释。 第 0 章 前言 www.hello‑algo.com 5 /* 标题注释,用于标注函数、类、测试样例等 */ // 内容注释,用于详解代码 /** * 多行 * 注释 */ 0.2.2 在动画图解中高效学习 相较于文字,视频和图片具有更高的信息密度和结构化程度,更易于理解。在本书中,重点和难点知识将主 ,每一轮将一张扑克牌从无序部分插入至有序部分,直至所有扑克牌都有序。 图 1‑2 扑克排序步骤 上述整理扑克牌的方法本质上是“插入排序”算法,它在处理小型数据集时非常高效。许多编程语言的排序 库函数中都有插入排序的身影。 例三:货币找零。假设我们在超市购买了 69 元的商品,给了收银员 100 元,则收银员需要找我们 31 元。他 会很自然地完成如图 1‑3 所示的思考。 1. 可选项是比 问 题时能够作出专业的反应和判断,从而提升工作的整体质量。举一个简单例子,每种编程语言都内置了排序 函数: ‧ 如果我们没有学过数据结构与算法,那么给定任何数据,我们可能都塞给这个排序函数去做了。运行顺 畅、性能不错,看上去并没有什么问题。 ‧ 但如果学过算法,我们就会知道内置排序函数的时间复杂度是 ?(? log ?) ;而如果给定的数据是固定 位数的整数(例如学号),那么我们就可以0 码力 | 379 页 | 18.48 MB | 10 月前3
Nacos架构&原理
ServerMemberManager 的存储、查询能力,后者 afterLookup 则是⼀个事件接口,当 MemberL ookup 需要进行成员节点信息更新时,会将当前最新的成员节点列表信息通过该函数进行通知给 ServerMemberManager,具体的节点管理方式,则是隐藏到具体的 MemberLookup 实现中。 接着来介绍下当前 Nacos 内部实现的几种寻址机制。 Nacos client 有错用或者应用不正 常(比如数据平台任务 failover 重试任务)。 limit_req_zone $limit_key zone=limit_get_config:10m rate=10r/s; server { listen 8080; server_name localhost; location /nacos/v1/cs/configs { if ($request_method nginx lua 模块获取 post 请求的参数,设置 limit_key 。 limit_req_zone $limit_key zone=limit_publish_config:10m rate=5r/s; location /limit_publish_config_url { set $dataId $arg_dataid; set $group $arg_group; set0 码力 | 326 页 | 12.83 MB | 9 月前3
Hello 算法 1.0.0b5 Java版Python 为准,例如使用 None 来表示“空”。 ‧ 本书部分放弃了编程语言的注释规范,以换取更加紧凑的内容排版。注释主要分为三种类型:标题注 释、内容注释、多行注释。 /* 标题注释,用于标注函数、类、测试样例等 */ // 内容注释,用于详解代码 /** * 多行 * 注释 */ 0.2.2 在动画图解中高效学习 相较于文字,视频和图片具有更高的信息密度和结构化程度,更易于理解。在本书中,重点和难点知识将主 ,每一轮将一张扑克牌从无序部分插入至有序部分,直至所有扑克牌都有序。 图 1‑2 扑克排序步骤 上述整理扑克牌的方法本质上是“插入排序”算法,它在处理小型数据集时非常高效。许多编程语言的排序 库函数中都存在插入排序的身影。 例三:货币找零。假设我们在超市购买了 69 元的商品,给了收银员 100 元,则收银员需要找我们 31 元。他 会很自然地完成如图 1‑3 所示的思考。 1. 可选项是比 iteration」是一种重复执行某个任务的控制结构。在迭代中,程序会在满足一定的条件下重复执行某 段代码,直到这个条件不再满足。 1. for 循环 for 循环是最常见的迭代形式之一,适合预先知道迭代次数时使用。 以下函数基于 for 循环实现了求和 1 + 2 + ⋯ + ? ,求和结果使用变量 res 记录。需要注意的是,Python 中 range(a, b) 对应的区间是“左闭右开”的,对应的遍历范围为 ?0 码力 | 376 页 | 30.69 MB | 1 年前3
Hello 算法 1.0.0b1 Java版0. 写在前面 hello‑algo.com 4 本书部分放弃了编程语言的注释规范,以换取更加紧凑的内容排版。注释主要分为三种类型:标题注释、内容 注释、多行注释。 /* 标题注释,用于标注函数、类、测试样例等 */ // 内容注释,用于详解代码 /** * 多行 * 注释 */ 0.2.3. 在动画图解中高效学习 视频和图片相比于文字的信息密度和结构化程度更高,更容易理解。在本书中,知识重难点会主要以动画、图 的。对于以上情况,我们很难仅凭时间复杂度来判定算法效率高低。然而,即使存在这些问题,复杂度分 析仍然是评判算法效率的最有效且常用的方法。 2.2.3. 函数渐近上界 设算法「计算操作数量」为 ?(?) ,其是一个关于输入数据大小 ? 的函数。例如,以下算法的操作数量为 ?(?) = 3 + 2? void algorithm(int n) { int a = 1; // +1 a = a } ?(?) 是个一次函数,说明时间增长趋势是线性的,因此易得时间复杂度是线性阶。 我们将线性阶的时间复杂度记为 ?(?) ,这个数学符号被称为「大 ? 记号 Big‑? Notation」,代表函数 ?(?) 的「渐近上界 asymptotic upper bound」。 我们要推算时间复杂度,本质上是在计算「操作数量函数 ?(?) 」的渐近上界。下面我们先来看看函数渐近上 界的数学定义。0 码力 | 186 页 | 14.71 MB | 1 年前3
Hello 算法 1.0.0b4 Java版Python 为准,例如使用 None 来表示“空”。 ‧ 本书部分放弃了编程语言的注释规范,以换取更加紧凑的内容排版。注释主要分为三种类型:标题注 释、内容注释、多行注释。 /* 标题注释,用于标注函数、类、测试样例等 */ // 内容注释,用于详解代码 /** * 多行 * 注释 */ 0.2.2. 在动画图解中高效学习 相较于文字,视频和图片具有更高的信息密度和结构化程度,因此更易于理解。在本书中,重点和难点知识 置;完成后最左 3 张扑克已经有序。 4. 不断循环以上操作,直至所有扑克牌都有序后终止。 以上整理扑克牌的方法本质上就是「插入排序」算法,它在处理小型数据集时非常高效。许多编程语言的排 序库函数中都存在插入排序的身影。 Figure 1‑2. 扑克排序步骤 例三:货币找零。假设我们在超市购买了 69 元的商品,给收银员付了 100 元,则收银员需要给我们找 31 元。他会很自然地完成以下思考: 明显优于算法 C 。在这些情况下, 我们很难仅凭时间复杂度判断算法效率高低。当然,尽管存在上述问题,复杂度分析仍然是评判算法效率最 有效且常用的方法。 2.2.3. 函数渐近上界 设算法的计算操作数量是一个关于输入数据大小 ? 的函数,记为 ?(?) ,则以下算法的操作数量为 ?(?) = 3 + 2? void algorithm(int n) { int a = 1; // +1 a =0 码力 | 342 页 | 27.39 MB | 1 年前3
Hello 算法 1.0.0b2 Java版0. 写在前面 hello‑algo.com 4 本书部分放弃了编程语言的注释规范,以换取更加紧凑的内容排版。注释主要分为三种类型:标题注释、内容 注释、多行注释。 /* 标题注释,用于标注函数、类、测试样例等 */ // 内容注释,用于详解代码 /** * 多行 * 注释 */ 0.2.3. 在动画图解中高效学习 视频和图片相比于文字的信息密度和结构化程度更高,更容易理解。在本书中,知识重难点会主要以动画、图 的。对于以上情况,我们很难仅凭时间复杂度来判定算法效率高低。然而,即使存在这些问题,复杂度分 析仍然是评判算法效率的最有效且常用的方法。 2.2.3. 函数渐近上界 设算法「计算操作数量」为 ?(?) ,其是一个关于输入数据大小 ? 的函数。例如,以下算法的操作数量为 ?(?) = 3 + 2? void algorithm(int n) { int a = 1; // +1 a = a } ?(?) 是个一次函数,说明时间增长趋势是线性的,因此易得时间复杂度是线性阶。 我们将线性阶的时间复杂度记为 ?(?) ,这个数学符号被称为「大 ? 记号 Big‑? Notation」,代表函数 ?(?) 的「渐近上界 asymptotic upper bound」。 我们要推算时间复杂度,本质上是在计算「操作数量函数 ?(?) 」的渐近上界。下面我们先来看看函数渐近上 界的数学定义。0 码力 | 197 页 | 15.72 MB | 1 年前3
Apache Shiro 1.2.x Reference Manual 中文翻译Referencing the Configuration 引用配置 现在我们已经定义了一个 INI 文件,我们可以在我们的示例程序中创建SecurityManager 实例 了,将 main 函数中的代码进行如下调整: Apache Shiro 1.2.x Reference Manual 中文翻译 11 2. Tutorial 教程 public static void main(String[] ((DefaultSessionManager)securityManager.getSessionManager()).setSessionDAO(sessionDAO); ... 使用这些函数,你可以配置 SecurityManager 视图(graph)中的任何一部分。 虽然在程序中配置很简单,但它并不是我们现实中配置的完美解决方案。在几种情况下这种 方法可能并不适合你的程序: 方法将有效地执行身份验证。 三步:处理成功或失败 Apache Shiro 1.2.x Reference Manual 中文翻译 36 5. Authentication 认证 当login函数没有返回信息时表明验证通过了。程序可以继续运行,此时执行 SecurityUtils.getSubject() 将返回验证后的 Subject 实例,subject.isAuthenticated())0 码力 | 196 页 | 2.34 MB | 1 年前3
Java 应用与开发 - 异常处理怎样去处理它们(因为和用户具体的应用有关); ▶ 另一方面,库的用户知道怎样处理这些错误,但却无法检查 它们何时发生(如果能检测,就可以再用户的代码里处理 了,不用留给库去发现)。 提供异常处理机制的的基本思想 让一个函数在发现了自己无法处理的错误时抛出(throw)一个 异常,然后它的(直接或者间接)调用者能够处理这个问题。 O 《C++ primer》 将问题检测和问题处理相分离。 (Exceptions let 怎样去处理它们(因为和用户具体的应用有关); ▶ 另一方面,库的用户知道怎样处理这些错误,但却无法检查 它们何时发生(如果能检测,就可以再用户的代码里处理 了,不用留给库去发现)。 提供异常处理机制的的基本思想 让一个函数在发现了自己无法处理的错误时抛出(throw)一个 异常,然后它的(直接或者间接)调用者能够处理这个问题。 O 《C++ primer》 将问题检测和问题处理相分离。 (Exceptions let 怎样去处理它们(因为和用户具体的应用有关); ▶ 另一方面,库的用户知道怎样处理这些错误,但却无法检查 它们何时发生(如果能检测,就可以再用户的代码里处理 了,不用留给库去发现)。 提供异常处理机制的的基本思想 让一个函数在发现了自己无法处理的错误时抛出(throw)一个 异常,然后它的(直接或者间接)调用者能够处理这个问题。 O 《C++ primer》 将问题检测和问题处理相分离。 (Exceptions let0 码力 | 33 页 | 626.40 KB | 1 年前3
共 198 条
- 1
- 2
- 3
- 4
- 5
- 6
- 20













