积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部后端开发(24)Java(24)

语言

全部中文(简体)(24)

格式

全部PDF文档 PDF(24)
 
本次搜索耗时 0.074 秒,为您找到相关结果约 24 个.
  • 全部
  • 后端开发
  • Java
  • 全部
  • 中文(简体)
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 Hello 算法 1.0.0 Java版

    如果你已经积累一定的刷题量,熟悉大部分题型,那么本书可助你回顾与梳理算法知识体系,仓库源代码可 以当作“刷题工具库”或“算法字典”来使用。 若你是算法“大神”,我们期待收到你的宝贵建议,或者一起参与创作。 � 前置条件 你需要至少具备任一语言的编程基础,能够阅读和编写简单代码。 0.1.2 内容结构 本书的主要内容如图 0‑1 所示。 ‧ 复杂度分析:数据结构和算法的评价维度与方法。时间复杂度和空间复杂度的推算方法、常见类型、示 algorithm」是在有限时间内解决特定问题的一组指令或操作步骤,它具有以下特性。 ‧ 问题是明确的,包含清晰的输入和输出定义。 ‧ 具有可行性,能够在有限步骤、时间和内存空间下完成。 ‧ 各步骤都有确定的含义,在相同的输入和运行条件下,输出始终相同。 1.2.2 数据结构定义 「数据结构 data structure」是计算机中组织和存储数据的方式,具有以下设计目标。 ‧ 空间占用尽量少,以节省计算机内存。 第 1 章 度之前,我们先来了解如何在程序中实现重复执行任务,即两种基本的程序控制结构:迭代、递归。 2.2.1 迭代 「迭代 iteration」是一种重复执行某个任务的控制结构。在迭代中,程序会在满足一定的条件下重复执行某 段代码,直到这个条件不再满足。 1. for 循环 for 循环是最常见的迭代形式之一,适合在预先知道迭代次数时使用。 以下函数基于 for 循环实现了求和 1 + 2 + ⋯ + ? ,求和结果使用变量
    0 码力 | 376 页 | 17.59 MB | 1 年前
    3
  • pdf文档 Hello 算法 1.1.0 Java版

    如果你已经积累一定的刷题量,熟悉大部分题型,那么本书可助你回顾与梳理算法知识体系,仓库源代码可 以当作“刷题工具库”或“算法字典”来使用。 若你是算法“大神”,我们期待收到你的宝贵建议,或者一起参与创作。 前置条件 你需要至少具备任一语言的编程基础,能够阅读和编写简单代码。 0.1.2 内容结构 本书的主要内容如图 0‑1 所示。 ‧ 复杂度分析:数据结构和算法的评价维度与方法。时间复杂度和空间复杂度的推算方法、常见类型、示 定问题的一组指令或操作步骤,它具有以下特性。 ‧ 问题是明确的,包含清晰的输入和输出定义。 ‧ 具有可行性,能够在有限步骤、时间和内存空间下完成。 ‧ 各步骤都有确定的含义,在相同的输入和运行条件下,输出始终相同。 1.2.2 数据结构定义 数据结构(data structure)是计算机中组织和存储数据的方式,具有以下设计目标。 ‧ 空间占用尽量少,以节省计算机内存。 第 1 章 初识算法 度之前,我们先来了解如何在程序中实现重复执行任务,即两种基本的程序控制结构:迭代、递归。 2.2.1 迭代 迭代(iteration)是一种重复执行某个任务的控制结构。在迭代中,程序会在满足一定的条件下重复执行某段 代码,直到这个条件不再满足。 1. for 循环 for 循环是最常见的迭代形式之一,适合在预先知道迭代次数时使用。 以下函数基于 for 循环实现了求和 1 + 2 + ⋯ + ? ,求和结果使用变量
    0 码力 | 378 页 | 18.47 MB | 1 年前
    3
  • pdf文档 Hello 算法 1.0.0b5 Java版

    如果您已经积累一定刷题量,熟悉大部分题型,那么本书可助您回顾与梳理算法知识体系,仓库源代码可以 被当作“刷题工具库”或“算法字典”来使用。 若您是算法大神,我们期待收到您的宝贵建议,或者一起参与创作。 � 前置条件 您需要至少具备任一语言的编程基础,能够阅读和编写简单代码。 0.1.2 内容结构 本书主要内容如图 0‑1 所示。 ‧ 复杂度分析:数据结构和算法的评价维度与方法。时间复杂度、空间复杂度的推算方法、常见类型、示 algorithm」是在有限时间内解决特定问题的一组指令或操作步骤,它具有以下特性。 ‧ 问题是明确的,包含清晰的输入和输出定义。 ‧ 具有可行性,能够在有限步骤、时间和内存空间下完成。 ‧ 各步骤都有确定的含义,相同的输入和运行条件下,输出始终相同。 1.2.2 数据结构定义 「数据结构 data structure」是计算机中组织和存储数据的方式,具有以下设计目标。 ‧ 空间占用尽量减少,节省计算机内存。 第 1 章 复执行某个任务, 我们通常会选用两种基本的程序结构:迭代和递归。 2.2.1 迭代 「迭代 iteration」是一种重复执行某个任务的控制结构。在迭代中,程序会在满足一定的条件下重复执行某 段代码,直到这个条件不再满足。 1. for 循环 for 循环是最常见的迭代形式之一,适合预先知道迭代次数时使用。 以下函数基于 for 循环实现了求和 1 + 2 + ⋯ + ? ,求和结果使用变量
    0 码力 | 376 页 | 30.69 MB | 1 年前
    3
  • pdf文档 Hello 算法 1.2.0 简体中文 Java 版

    如果你已经积累一定的刷题量,熟悉大部分题型,那么本书可助你回顾与梳理算法知识体系,仓库源代码可 以当作“刷题工具库”或“算法字典”来使用。 若你是算法“大神”,我们期待收到你的宝贵建议,或者一起参与创作。 前置条件 你需要至少具备任一语言的编程基础,能够阅读和编写简单代码。 0.1.2 内容结构 本书的主要内容如图 0‑1 所示。 ‧ 复杂度分析:数据结构和算法的评价维度与方法。时间复杂度和空间复杂度的推算方法、常见类型、示 定问题的一组指令或操作步骤,它具有以下特性。 ‧ 问题是明确的,包含清晰的输入和输出定义。 ‧ 具有可行性,能够在有限步骤、时间和内存空间下完成。 ‧ 各步骤都有确定的含义,在相同的输入和运行条件下,输出始终相同。 1.2.2 数据结构定义 数据结构(data structure)是组织和存储数据的方式,涵盖数据内容、数据之间关系和数据操作方法,它具 有以下设计目标。 第 1 章 初识算法 如果把具体的工作技能比作是武功的“招式”的话,那么基础科目应该更像是“内功”。 我认为学算法(以及其他基础科目)的意义不是在于在工作中从零实现它,而是基于学到的知识,在解决问 题时能够作出专业的反应和判断,从而提升工作的整体质量。举一个简单例子,每种编程语言都内置了排序 函数: ‧ 如果我们没有学过数据结构与算法,那么给定任何数据,我们可能都塞给这个排序函数去做了。运行顺 畅、性能不错,看上去并没有什么问题。
    0 码力 | 379 页 | 18.48 MB | 10 月前
    3
  • pdf文档 Hello 算法 1.0.0b4 Java版

    如果您已经积累一定刷题量,熟悉大部分题型,那么本书可助您回顾与梳理算法知识体系,仓库源代码可以 被当作“刷题工具库”或“算法字典”来使用。 若您是算法大神,我们期待收到您的宝贵建议,或者一起参与创作。 � 前置条件 您需要至少具备任一语言的编程基础,能够阅读和编写简单代码。 0.1.2. 内容结构 本书主要内容包括: ‧ 复杂度分析:数据结构和算法的评价维度,算法效率的评估方法。时间复杂度、空间复杂度的推算方 定问题的一组指令或操作步骤。算法具有以下特性: ‧ 问题是明确的,包含清晰的输入和输出定义。 ‧ 具有可行性,能够在有限步骤、时间和内存空间下完成。 ‧ 各步骤都有确定的含义,相同的输入和运行条件下,输出始终相同。 1.2.2. 数据结构定义 「数据结构 Data Structure」是计算机中组织和存储数据的方式。为了提高数据存储和操作性能,数据结构 的设计目标包括: ‧ 空间占用尽量减少,节省计算机内存。 和 C 的时间复杂度相同,但实际运行时间差别很大。同 样,尽管算法 B 的时间复杂度比 C 高,但在输入数据大小 ? 较小时,算法 B 明显优于算法 C 。在这些情况下, 我们很难仅凭时间复杂度判断算法效率高低。当然,尽管存在上述问题,复杂度分析仍然是评判算法效率最 有效且常用的方法。 2.2.3. 函数渐近上界 设算法的计算操作数量是一个关于输入数据大小 ? 的函数,记为 ?(?) ,则以下算法的操作数量为
    0 码力 | 342 页 | 27.39 MB | 1 年前
    3
  • pdf文档 Hello 算法 1.0.0b1 Java版

    数题型,那么本书可以帮助你回顾与梳理算法知识 体系,仓库源代码可以被当作“刷题工具库”或“算法字典”来使用。 如果您是「算法大佬」,希望可以得到你的宝贵意见建议,或者一起参与创作。 � 前置条件 您需要至少具备任一语言的编程基础,能够阅读和编写简单代码。 0.1.2. 内容结构 本书主要内容有: ‧ 复杂度分析:数据结构与算法的评价维度、算法效率的评估方法。时间复杂度、空间复杂度,包括推算 需要会推算即可,数学意义可以慢慢领悟。 2.2.4. 推算方法 推算出 ?(?) 后,我们就得到时间复杂度 ?(?(?)) 。那么,如何来确定渐近上界 ?(?) 呢?总体分为两步,首 先「统计操作数量」,然后「判断渐近上界」。 1) 统计操作数量 对着代码,从上到下一行一行地计数即可。然而,由于上述 ? ⋅ ?(?) 中的常数项 ? 可以取任意大小,因此操作 数量 ?(?) 中的各种系数、常数项都可以被 for (int j = 0; j < n + 1; j++) { System.out.println(0); } } } 2. 复杂度分析 hello‑algo.com 18 2) 判断渐近上界 时间复杂度由多项式 ?(?) 中最高阶的项来决定。这是因为在 ? 趋于无穷大时,最高阶的项将处于主导作用, 其它项的影响都可以被忽略。 以下表格给出了一些例子,其中有一些夸张的值,是想要向大家强调
    0 码力 | 186 页 | 14.71 MB | 1 年前
    3
  • pdf文档 Hello 算法 1.0.0b2 Java版

    数题型,那么本书可以帮助你回顾与梳理算法知识 体系,仓库源代码可以被当作“刷题工具库”或“算法字典”来使用。 如果您是「算法大佬」,希望可以得到你的宝贵意见建议,或者一起参与创作。 � 前置条件 您需要至少具备任一语言的编程基础,能够阅读和编写简单代码。 0.1.2. 内容结构 本书主要内容有: ‧ 复杂度分析:数据结构与算法的评价维度、算法效率的评估方法。时间复杂度、空间复杂度,包括推算 需要会推算即可,数学意义可以慢慢领悟。 2.2.4. 推算方法 推算出 ?(?) 后,我们就得到时间复杂度 ?(?(?)) 。那么,如何来确定渐近上界 ?(?) 呢?总体分为两步,首 先「统计操作数量」,然后「判断渐近上界」。 1) 统计操作数量 对着代码,从上到下一行一行地计数即可。然而,由于上述 ? ⋅ ?(?) 中的常数项 ? 可以取任意大小,因此操作 数量 ?(?) 中的各种系数、常数项都可以被 for (int j = 0; j < n + 1; j++) { System.out.println(0); } } } 2. 复杂度分析 hello‑algo.com 18 2) 判断渐近上界 时间复杂度由多项式 ?(?) 中最高阶的项来决定。这是因为在 ? 趋于无穷大时,最高阶的项将处于主导作用, 其它项的影响都可以被忽略。 以下表格给出了一些例子,其中有一些夸张的值,是想要向大家强调
    0 码力 | 197 页 | 15.72 MB | 1 年前
    3
  • pdf文档 Apache Shiro参考手册中文版

    API,来简化开发人员在使他们的应用程序安全上的努力。 以下是你可以用 Apache Shiro 所做的事情:  验证用户来核实他们的身份  对用户执行访问控制,如:  判断用户是否被分配了一个确定的安全角色  判断用户是否被允许做某事  在任何环境下使用 Session API,即使没有 Web 或 EJB 容器。  在身份验证,访问控制期间或在会话的生命周期,对事件作出反应。 但如果他们的登录尝试失败了会怎样?你能够捕获各种具体的异常来告诉你到底发生了什么,并允许你去处理并作 出相应反应: 你能够检查到许多不同类型的异常,或抛出你自己的自定义条件的异常——Shiro 可能不提供的。请参见 AuthenticationException JavaDoc 获取更多。 Handy Hint 最安全的做法是给普通 好了,到现在为止,我们已经有了一个登录用户。我们还能做些什么? 比方说,他们是是谁: 我们也可以测试他们是否有特定的角色: 我们还可以判断他们是否有权限在一个确定类型的实体上进行操作: 当然,我们可以执行极其强大的实例级权限检查——判断用户是否有能力访问某一类型的特定实例的能力: 小菜一碟,对吧? 最后,当用户完成了对应用程序的使用,他们可以注销:
    0 码力 | 92 页 | 1.16 MB | 1 年前
    3
  • pdf文档 《Java 应用与开发》课程讲义 - 王晓东

    JAVA 语言基础 � 2 � 2.1.2 数据类型转换 数值型不同类型数据的转换 数值型不同类型数据之间的转换,自动类型转换需要符合以下条件: 1. 转换前的数据类型与转换后的类型兼容。 2. 转换后的数据类型的表示范围比转换前的类型大。 3. 条件 2 说明不同类型的数据进行运算时,需先转换为同一类型,然后进行运算。 转换从“短”到“长”的优先关系为: byte → short → +、-、*、/、%、++、-- 关系运算符 >、<、>=、<=、==、!= 逻辑运算符 !、&&、||、&、| 、^ 位运算符 >>、<<、>>>、&、|、^、~ 赋值运算符 =、扩展赋值运算符,如+=、/=等 条件运算符 ? : 其他运算符 包括分量运算符 . 、下标运算符[ ]、实例运算符 instanceof、内存分配运算符 new、 强制类型转换运算符(类型)、方法调用运算符()等 图 2.1 Java – 文件注释:/** */ 2.2.2 分支结构 if 分支结构 1 if (条件表达式) { 语句序列 1 } else { 语句序列 2 } if (条件表达式) { 语句序列 } 条件表达式 语句序列1 语句序列2 T F 条件表达式 语句序列1 T if 双路条件结构 if 单路条件结构 图 2.2 if 分支结构 1 . . . . . . . . . . .
    0 码力 | 330 页 | 6.54 MB | 1 年前
    3
  • pdf文档 JAVA 应用与开发 - 集合与映射

    Alice Age:25 21 28 Comparable �� O 对上述程序的几点说明 1. 用户在重写 compareTo() 方法以定制比较逻辑时,需要确保其 与等价性判断方法 equals() 保持一致,即确保条件 “(x.compareTo(y) == 0) == (x.equals(y))”永远成立,否则逻 辑上不合理。所以上例同时重写了 equals() 方法。 2. 为保证能够实现元素的排序功能,TreeSet 接口并不专用于集合框架。 22 28 Comparable �� O 对上述程序的几点说明 1. 用户在重写 compareTo() 方法以定制比较逻辑时,需要确保其 与等价性判断方法 equals() 保持一致,即确保条件 “(x.compareTo(y) == 0) == (x.equals(y))”永远成立,否则逻 辑上不合理。所以上例同时重写了 equals() 方法。 2. 为保证能够实现元素的排序功能,TreeSet 接口并不专用于集合框架。 22 28 Comparable �� O 对上述程序的几点说明 1. 用户在重写 compareTo() 方法以定制比较逻辑时,需要确保其 与等价性判断方法 equals() 保持一致,即确保条件 “(x.compareTo(y) == 0) == (x.equals(y))”永远成立,否则逻 辑上不合理。所以上例同时重写了 equals() 方法。 2. 为保证能够实现元素的排序功能,TreeSet
    0 码力 | 66 页 | 713.79 KB | 1 年前
    3
共 24 条
  • 1
  • 2
  • 3
前往
页
相关搜索词
Hello算法1.0Java1.10b51.2简体中文简体中文0b40b10b2ApacheShiro参考手册参考手册文版中文版lecturenotesforApplicationandDevelopmentpdfSetlistmap
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩