积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部数据库(80)TiDB(19)Greenplum(17)PieCloudDB(11)数据库中间件(10)ClickHouse(6)Redis(4)Apache Doris(4)MySQL(3)Apache HBase(2)

语言

全部中文(简体)(77)中文(简体)(2)英语(1)

格式

全部PDF文档 PDF(80)
 
本次搜索耗时 0.032 秒,为您找到相关结果约 80 个.
  • 全部
  • 数据库
  • TiDB
  • Greenplum
  • PieCloudDB
  • 数据库中间件
  • ClickHouse
  • Redis
  • Apache Doris
  • MySQL
  • Apache HBase
  • 全部
  • 中文(简体)
  • 中文(简体)
  • 英语
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 Greenplum机器学习⼯具集和案例

    thegiac.com www.top100summit.com Greenplum机器器学习⼯工具集和案例例 姚延栋 Pivotal 研发技术总监 2017.thegiac.com • Greenplum ⼤大数据平台 • Greenplum 机器器学习⼯工具 • Greenplum 机器器学习案例例 ⼤大纲 2017.thegiac.com Greenplum: 完善的标准支持:SQL、JDBC、ODBC • 集成数据平台:BI/DW、文本、GIS、图、图像、机器学习 • 开放源代码,持续大力投入 • 敏捷方法学:快速迭代、持续发布、质量内建 • 企业级稳定性,成熟生态系统 2017.thegiac.com Greenplum: 机器学习工具集 2017.thegiac.com • PL/X:各种语言实现自定义函数(存储过程) MADLib: 数据挖掘、统计分析、图(Graph)等算法 • GPText:文本检索和分析 • GeoSpatial:地理信息数据分析 • Image: 图像数据分析 Greenplum 机器器学习⼯工具集 2017.thegiac.com Greenplum Procedure Language PLPython, PLR 2017.thegiac.com PL/Python
    0 码力 | 58 页 | 1.97 MB | 1 年前
    3
  • pdf文档 Qcon北京2018--《MySQL的Docker容器化大规模实践》--王晓波

    。 2.随着业务的发展,扩容数据库的不方便不快捷,也是个问题。 3.大量数据量小的数据库系统也单独部署在物理机,浪费问题突出。 4.DBA的数据库自动化标准化运维的需求。 5.Docker在同程的大规模使用,应用部署环境100%容器化,有Docker丰富的经验 。 让数据库的部署点单化开启 2核4G 4核4G 4核8G 8核8G 8核16G 16核16G 16核64G 32核64G
    0 码力 | 32 页 | 7.11 MB | 1 年前
    3
  • pdf文档 PieCloudDB Database 产品白皮书

    基灿异并行计算) 的云原生虚拟数仓 产品白皮书 ENRANSGenpPie.com 20230penPieAIIRight Reserved, Openpie | PiecloudDB 基于eMPP (弹性大规模并行计算) 的云原生虚拟数仓 产品白皮书 行业背景 数据量的爆发式增长 数据库的未来在云上 传统数仓的痛点 云时代的数据处理要求 piecloudDB,云原生虚拟数仓 PieCloudDB 产品概述 PieCloudDB 产品核心技术 PieCloudDB8 产品优势 关于OpenpPie 附录: 术语表 11 13 15 16 openpie | PiecloudDB 基于 eMPP (弹性大规模并行计算) 的云原生虚拟数仓 产品白皮书 百岗 行业背景 石油是工业的血液,数据是数字经济的“石油”,数据分析则是石油精炼。 随着信息技术的发展,互联网应用的加速普及,人类进入了数字经济时代。进入二十一世纪以后,随着移动互联网技 一趋势靠拢。2020 年数据显示,云数据库已占据整体数据库市场份额的40%,2022年云数据库营收数据将占据数据 库整体市场的半数以上。 OpenpPie | PiecloudDB 基于eMPP (弹性大规模并行计算) 的云原生虚拟数仓 产品白皮书 SN 中 Market Guide for DBMS, China
    0 码力 | 17 页 | 2.68 MB | 1 年前
    3
  • pdf文档 云原生虚拟数仓PieCloudDB Database产品白皮书

    PieCloudDB Database 基于 eMPP (弹性大规模并行计算)的云原生虚拟数仓 产品白皮书 www.OpenPie.com ©2023 OpenPie All Right Reserved . 行业背景 数据量的爆发式增长 数据库的未来在云上 传统数仓的痛点 云时代的数据处理要求 PieCloudDB,云原生虚拟数仓 很多受欢迎的数据库仓库均为分布式数据库,而典型的传统分布式数据库系统大多是 MPP(大规模并行计算)架构。 MPP 架构的数据库以 PC 服务器为单位,通过如下图所示的组群方式来扩展存储和计算。假设一个宽表有3亿条记录, MPP 数据库会尝试在每台 PC 服务器的硬盘上分布1亿条记录。数据计算时,所有机器同时并行计算,理论上最高可以 把计算时间降低到单机部署的 1/n(n为机器数量),节省了海量数据的处理时间。 传统数据仓 对于传统 MPP 数仓,企业往往会需要配备运维人力,且对运维、开发人员要求高,需要相关人员掌握复杂的技术 栈,技术的更新迭代迅速,相关人员需保持积极的知识更新意识。相关人才市场较小,人才匮乏。高昂的学习成本造 成用户使用过程中性能差、故障率高、故障修复时间长等问题。 5 云时代的数据处理要求 随着数据量和计算能力的爆发式增长,云计算技术的迅猛发展,云原生架构愈受欢迎,云原生时代应运而生。云原生
    0 码力 | 17 页 | 2.02 MB | 1 年前
    3
  • pdf文档 Greenplum 精粹文集

    Share-nothing 无共享架构上,让每一颗 CPU 和 每一块磁盘 IO 都运转起来,无共享架构将这种并行处理发挥到极致。 相比一些其它传统数据仓库的 Sharedisk 架构,后者最大瓶颈就是在 IO 吞吐上,在大规模数据处理时,IO 无法及时 feed 数据给到 CPU, CPU 资源处于 wait 空转状态,无法充分利用系统资源,导致 SQL 效 率低下: 一台内置 16 块 SAS 盘的 X86 服务器,每秒的 类系统的衡 量指标是 TPS,适用的系统是 OLTP 数据库或类似 GemFire 的内存数 据库。 5. Greenplum MPP 与 Hadoop MPP 和 Hadoop 都是为了解决大规模数据的并行计算而出现的技术, 两种技术的相似点在于: ·分布式存储数据在多个节点服务器上 ·采用分布式并行计算框架 ·支持横向扩展来提高整体的计算能力和存储容量 ·都支持 X86 开放集群架构 的操作和交互过程。 而对 MapReduce 编程明显是困难的,在原生的 Mapreduce 开发 框架基础上的开发,需要技术人员谙熟于 JAVA 开发和并行原理, 不仅业务分析人员无法使用,甚至技术人员也难以学习和操控。为 了解决易用性的问题,近年来 SQL-0N-HADOOP 技术大量涌现 出来,几乎成为当前 Hadoop 开发使用的一个技术热点趋势。 这 些 技 术 包 括:Hive、Pivotal
    0 码力 | 64 页 | 2.73 MB | 1 年前
    3
  • pdf文档 Greenplum Database 管理员指南 6.2.1

    Standby : GP 的备用控制节点/实例 Host(主机) : GP 的一台独立的机器设备 Instance : GP 的计算实例,很多时候也叫 Segment Primary : GP 的主计算实例 Mirror : GP 的镜像计算实例 MPP : 大规模并行处理 算子 : 执行计划中的运算操作 背景简介 多年前,编者翻译了 ...................................................................................... - 346 - 管理大规模集群的数据重分布 .............................................................................. - 346 - 可用磁盘空间充足的系统 数据库已经开源多年,多年来一直由 Pivotal 公司商业运营,在 2020 年,Pivotal 被兄弟公司 VMWare 收购,由 VMWare 继续运营。近年来,Greenplum 在国内建立了一个较大规模的研发团队,越来越多的承担更重要的研发任务,包括 PostgreSQL 的版本合并等,从而,可以为国内商业用户提供更专业和更优质的本地 化服务,用户遇到问题,反馈给专业技术支持人员,或者专业售后服务团队,他们会同
    0 码力 | 416 页 | 6.08 MB | 1 年前
    3
  • pdf文档 Pivotal Greenplum 5: 新一代数据平台

    的核心特征,及多年来围绕该平台发展出的生态系统。 摘要 Pivotal Greenplum 不受限于基础架构,这意味着它是一种可完全移植的分析数据库软件解决方案,可部署在多云环境(公 有云和私有云)中,也适用不同的本地配置。其大规模并行处理 (MPP) SQL 的设计核心是一个称为 GPORCA 的新一代查 询优化器。GPORCA 专为满足在多结构数据环境中进行高级分析的需求而设计,能够处理多种并发混合工作负载的复杂查 询。与旧式 Apache SOLR PostGIS ANSI SQL 其他数据库 SQL ML/统计数据/图形 程序化 文本 地理空间 公有云 私有云 完全 托管云 本地 BI / 报告 自定义应用 机器学习 AI SQL 大规模 并行处理 (MPP) PB 级数据 加载 查询 优化器 (GPORCA) Workload Manager 多态存储 Command Center SQL 兼容性 (Hyper-Q) 5:新一代数据平台 集成分析:改进后的全新分析接口 一直以来,客户都能在 Pivotal Greenplum 中做高级分析,无论是提供将应用逻辑向下推送至数据所在位置的方法,执行 分析功能,还是以大规模并行方式构建数据模型,都可以实现。Greenplum 5 支持适用于数据挖掘和数据科学工作的最全面、 最先进的分析程序包和扩展。 Greenplum 5 还针对最受欢迎的 Python 和 R 语言算法库提供简单易用的安装程序。
    0 码力 | 9 页 | 690.33 KB | 1 年前
    3
  • pdf文档 6. ClickHouse在众安的实践

    竞争优势 分析成熟度 洞察与应对 预测与行动 源数据 数据清洗 标准报表 OLAP系统 商务智能(BI) 机器学习建模 人工智能优化 发生了什么? 为什么发生? 什么会发生? 什么是最佳决策? 分析性数据仓库 数据洞察与可视化 数据治理 预测分析与机器学习 CHAPTER 众安集智平台与clickhouse 02 集智平台 X-Brain AI 开放平台 计算框架 Streaming, Flink 离线/实时任务监控 数据、模型存储 Hive, HBase, Clickhouse, Kylin 数据接入 消 息 中 间 件 模型、 算法 模版 机器学习平台 Antron 机器人平台 X-Insight 数据洞察平台 X-Zatlas 数据可视化平台 模板 X-BI 数据探索平台 图像分类 平台 OCR工具 链 X-Farm 异构数据治理、协同平台 垂直方向行业模板,简化开发过程 • 多语言多runtime支持,Bring your own model • 数据流转、建模、机器学习任务的全生命周 期管理 • 大规模在线任务监控、自动模型性能监测、 重训练与发布 • 追溯数据血缘,数据、算法模型版本管理 • 支持算法模型结果的可重现、可审计 • 缓解AI/机器学习带来的潜在伦理与法律担忧 全生命周期管理 追溯与可重现 洞察平台架构 Why Clickhouse
    0 码力 | 28 页 | 4.00 MB | 1 年前
    3
  • pdf文档 Greenplum 新一代数据管理和数据分析解决方案

    2010/4/8 官方网站: www.greenplum.com www.greenplum-china.com Greenplum:简介 Greenplum数据引擎软件为新一代数 据仓库所需的大规模数据和复杂查询功 能所设计 3 推动数据依赖型企业的发展 全球各地的一些Greenplum客户 4 亚太地区 欧洲、中东、非洲 北美 中国的客户 5 金融 交通 互联网 其它 Teradata 安全度 • 查询、报告、分析的数量 • 数据的高度多样性 • 大量定制数据 • 监管要求 商务智能/数据仓库发展趋势 一切都在增长! 数据仓库工作量:数据膨胀 面临的新难题是如何处理大规模数据 过去的10年 现在 HPC 企业 SME 万亿字节 千兆字节 兆字节 千万亿字节 万亿字节 千兆字节 行业商务智能解决方案的实例 政府 电信 金融服务 公民服务 国家安全 将SQL的普遍性与MapReduce的灵 活编程模式结合起来 • 针对业务关键分析功能提供企业级集 成、支持和发布 • 为新一代分析处理技术开启了大门– 其中包括文本分析、图形分析、数据 挖掘、机器学习以及更多内容 客户实例:福克斯互动媒体 (Fox Interactive Media) • 业务问题 • 改进定位广告 • 竞争对手 • Teradata, Oracle • 数据规模
    0 码力 | 45 页 | 2.07 MB | 1 年前
    3
  • pdf文档 TiDB 开源分布式关系型数据库

    两款存储引擎,Tiflash 通过 Multi-Raft Learner 协议 实时从TiKV 复制数据,确保行存储引擎 TiKV 和列存储引擎 TiFlash 之间的数据强一致。TiKV、 Tiflash 可按需部署在不同的机器,解决 HTAP 资源隔离的问题。 云原生的分布式数据库 为云设计的分布式数据库,通过TiDB Operator 可在公有云、私有云、混合云中实现部署工具 化、自动化,依托公有云提供开箱即用的 TiDB / 成本的 最大化。 。 高可用: 数据的多个副本分布在云上不同的可用区,容忍单点故障,实现服务自 续性。 *。 HTAP: 支持面向关键业务的交易型工作负载和低延迟实时分析型工作负载,提供大规模的联机交易 处理 (OLTP) 与联机分析处理 (DOLAP) 的一站式解决方案。 。 多云支持: TiDB Cloud 当前支持用户选择在 AWS 或者 Google Cloud 上部署和使用TiDB 专用服务器 册反复制专用服务路 |。 dasriaterabher pvmoe To ng Tv 光大银行新一代财富管理平台系统架构图 用户收益 *。 TiDB 经过大规模金融场景验证,解决了传统关系型数据库的容量与性能瓶颈问题。 。 稳定高效的支持金融联机交易及批量业务,支持复杂事务交易及批量数据处理负载。 。 采用多中心多活架构部署,保障数据高可用的同时大幅提升业务的容灾能力
    0 码力 | 58 页 | 9.51 MB | 1 年前
    3
共 80 条
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 8
前往
页
相关搜索词
Greenplum机器学习案例Qcon北京2018MySQLDocker容器大规规模大规模实践王晓波PieCloudDBDatabase产品白皮皮书白皮书原生虚拟数仓精粹文集管理管理员指南Pivotal一代新一代数据平台ClickHouse众安数据管理分析数据分析解决方案解决方案TiDB开源分布布式分布式关系据库数据库
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩