8 4 Deep Learning with Python 费良宏2016的目标:Web爬虫+深度学习+自然语言处理 = ? Microso� Apple AWS 今年最激动人心的事件? 2016.1.28 “Mastering the game of Go with deep neural networks and tree search” 今年最激动人心的事件? 2016年3月Alphago 4:1 击败李世石九段 人工智能 VS. 机器学习 VS. 深度学习 文的自动分类 半监督学习 - 介于监督学习和无监督学习之间,算法: Graph Inference 或者Laplacian SVM 强化学习- 通过观察来学习做成如何的动作, 算法:Q-Learning以及时间差学习 机器学习- 方法及流程 输入特征选择 – 基于什么进行预测 目标 – 预测什么 预测功能 – 回归、聚类、降维... Xn -> F(xn) -> T(x) 机器学习- (NYU,2002), Facebook AI, Google Deepmind Theano (University of Montreal, ~2010), 学院派 Kersa, “Deep Learning library for Theano and TensorFlow” Caffe (Berkeley),卷积神经网络,贾扬清 TensorFlow (Google) Spark MLLib0 码力 | 49 页 | 9.06 MB | 1 年前3
Learning Laravel0 码力 | 216 页 | 1.58 MB | 1 年前3
How Deep Do You Go?How Deep Do You Go? Contributing to the os Package Oliver Stenbom July 25th Gophercon 2019 On an unsuspecting Monday last July, the team I was working at the time received a bug report. The report0 码力 | 70 页 | 14.56 MB | 1 年前3
Solving Nim by the Use of Machine LearningSolving Nim by the Use of Machine Learning Exploring How Well Nim Can be Played by a Computer Mikael Nielsen Røykenes Thesis submitted for the degree of Master in Informatics: Programming and Networks the Use of Machine Learning Exploring How Well Nim Can be Played by a Computer Mikael Nielsen Røykenes c⃝ 2019 Mikael Nielsen Røykenes Solving Nim by the Use of Machine Learning http://www.duo.uio 3.4 The Sprague-Grundy Theorem . . . . . . . . . . . . . . . . . . . 6 4 Machine Learning 6 4.1 Reinforcement learning . . . . . . . . . . . . . . . . . . . . . . . . 7 4.1.1 The Principle . . . . .0 码力 | 109 页 | 6.58 MB | 1 年前3
Learning by Contributing to Rust Compiler - 陈于康第三届中国 Rust 开发者大会 Learning by Contributing to Rust Compiler Yukang github.com/chenyukang Engineer @ Cryptape Leveling Up in Rust • 2011 ~ 2014 EDA startup C/C++ • 2014 ~ 2020 DJI the best team What I’ve learned • Stay curious, learn by doing • You don't need to master Rust; learning Rust by hacking Rust compiler is a great way • Treat it as a game, have fun, remain patient0 码力 | 23 页 | 3.28 MB | 1 年前3
Leveraging the Power of C++ for Efficient Machine Learning on Embedded DevicesLeveraging the power of C++ for efficient machine learning on embedded devices Adrian Stanciu adrian.stanciu.pub@gmail.com CppCon, 2023 1 / 50About me ◮ I am a software engineer from Romania ◮ I have Image classification ◮ Hand gesture recognition ◮ Summary ◮ Q&A 4 / 50Motivation 5 / 50Machine Learning (ML) ◮ Subfield of Artificial Inteligence (AI) ◮ Enables computers to learn from data and then consumption ◮ May have real-time performance constraints 7 / 50Machine learning on embedded devices ◮ Alternative to cloud-based machine learning ◮ Advantages: ◮ Real-time processing ◮ Low latency ◮ Reduced bandwidth0 码力 | 51 页 | 1.78 MB | 6 月前3
micrograd++: A 500 line C++ Machine Learning Librarymicrograd++: A 500 line C++ Machine Learning Library Gautam Sharma Independent Researcher gautamsharma2813@gmail.com Abstract—micrograd++ is a pure C++ machine learning li- brary inspired by Andrej Karpathy’s for building and training machine learning models. By leveraging the performance efficiency of C++, micro- grad++ offers a robust solution for integrating machine learning capabilities directly into C++-based Traditionally, all machine learning libraries are extremely bulky and very hard to integrate as third party dependencies. This aspect scares practitioners to adopt a C++ based machine learning library for prototyping0 码力 | 3 页 | 1.73 MB | 6 月前3
Rust原子操作高性能实践 Rust Atomic Deep Dive - 王璞第三届中国Rust开发者大会 Rust Atomic Deep Dive Pu Wang @ DatenLord 2023/06/17 Rust原子操作高性能实践 What are atomic operations in Rust? What Why need atomic operations? Why How 01 02 03 Memory order in atomic operations0 码力 | 19 页 | 1.88 MB | 1 年前3
2020美团技术年货 算法篇进行特征的高阶组合。 模型结构 我们的模型结构参考 AutoInt[3] 结构,但在实践中,根据美团搜索的数据特点,我们 对模型结构做了一些调整,如下图 2 所示: 图 2 Transformer&Deep 结构示意图 算法 < 27 相比 AutoInt[3],该结构有以下不同: ● 保留将稠密特征和离散特征的 Embedding 送入到 MLP 网络,以隐式的方式 学习其非线性表达。 Pre-training of deep bidirectional transformers for language understanding[J]. arXiv preprint arXiv:1810.04805, 2018. [3] Song W, Shi C, Xiao Z, et al. Autoint: Automatic feature interaction learning via self-attentive e-commerce recommendation in Alibaba[C]//Proceedings of the 1st International Workshop on Deep Learning Practice for High-Dimensional Sparse Data. 2019: 1-4. [5] Pei C, Zhang Y, Zhang Y, et al. Personalized0 码力 | 317 页 | 16.57 MB | 1 年前3
2022年美团技术年货 合辑NeurIPS 2021 | Twins:重新思考高效的视觉注意力模型设计 339 目录 iv > 2022年美团技术年货 美团获得小样本学习榜单 FewCLUE 第一! Prompt Learning+ 自训练实战 353 DSTC10 开放领域对话评估比赛冠军方法总结 368 KDD 2022 | 美团技术团队精选论文解读 382 ACM SIGIR 2022 | 美团技术团队精选论文解读 ConvNets Great Again, https://arxiv.org/ pdf/2101.03697 [5] CSPNet: A New Backbone that can Enhance Learning Capability of CNN, https://arxiv.org/abs/1911.11929 [6] Path aggregation network for instance abs/2103.14259 [8] Computer Architecture: A Quantitative Approach [9] SIoU Loss: More Powerful Learning for Bounding Box Regression, https:// arxiv.org/abs/2205.12740 6. 作者简介 楚怡、凯衡、亦非、程孟、秦皓、一鸣、红亮、林园等,均来自美团基础研发平台0 码力 | 1356 页 | 45.90 MB | 1 年前3
共 1000 条
- 1
- 2
- 3
- 4
- 5
- 6
- 100













