3.云原生边云协同AI框架实践云原生边云协同AI框架实践 普杰 华为云边缘云创新Lab 高级工程师 KubeEdge SIG AI Tech Lead 目 录 Edge AI现状与趋势 01 Sedna:边云协同AI框架 02 Sedna-GM:K8S Operator 03 实践案例 04 Edge AI现状与趋势 第一部分 Why Edge AI? • Cloud中心化的AI计算范式不足以应对端上AI 边缘服务 器、云服务器,利用分布式乃至分布式协同方式实现人工智能的技术 数据在边缘产生 边侧逐步具备AI能力 分布式协同AI 核心驱动力 分布式协同AI核心驱动力 • 随着边侧算力逐步强化,边缘AI持续演变至分布式协同AI 分布式协同AI技术挑战 1. 边缘资源碎片化 2. 边缘数据孤岛 3. 边缘样本少 4. 边缘数据异构 分布式协同AI 技术挑战 边云协同AI框架 第二部分 首个分布式协同AI开源项目Sedna 基于KubeEdge提供的边云协同能力,支持现有AI类应用无缝下沉到边缘 为分布式协同机器学习服务 ✓ 降低构建与部署成本 ✓ 提升模型性能 ✓ 保护数据隐私 SIG成员近年发表分 布式协同AI顶会论文 10+ SIG成员在AI顶会IJCAI 上分享分布式协同AI论文 Sedna斩获中国信通院云边协 同应用创新大赛最佳创新奖 ✓ 数据集管理 ✓ 模型管理0 码力 | 37 页 | 2.36 MB | 1 年前3
Golang大规模云原生应用管理实践Golang⼤规模云原⽣应⽤管理实践 刘洋(炎寻) 关于我 • 毕业于中国科学技术大学,定居杭州 • 就职于阿里云-云原生应用平台团队 • Problem Solver,聚焦中间件,容器,Kubernetes,PaaS平台… • OAM社区成员 开局一张图 规模化应用交付效率对比去年 每万笔峰值交易的IT成本对比4年前 提升1倍 下降80% 云原生 技术 稳定 成本 效率 效率 云原生-程序员视角 基础设施 K8s 云原生生态(CNCF) 云原生应用 云原生是以容器技术为基础围绕着Kubernetes进行的一场技术标准化演进。通过标准可扩展的调度,网络, 存储,容器运行时接口来提供基础设施;通过标准可扩展的声明式资源和控制器来提供运维能力。两层标 准化推进了细化的社会分工,各领域进一步提升规模化和专业化,全面达到成本,效率,稳定性的优化。 4 6 7 2 Custom controller Network plugins Storage plugins 统筹规划, 降低成本 自动化运维, 提升稳定性 非业务逻辑剥离, 提升交付效率 Golang与云原生生态(CNCF) 项目数占比: 214/1512(14.2%) Github star数占比:1265737 / 2458072(51.5%)市值占比: $8.08T/$19.46T(41.5%)0 码力 | 23 页 | 7.70 MB | 1 年前3
云原生go-zero微服务框架设计思考云原生go-zero微服务框架设计思考 万俊峰Kevin@好未来 关于我 万俊峰Kevin ● go-zero作者 ● 好未来资深专家 ● 晓黑板研发负责人 ● 十多年研发团队管理经验 ● 近20年开发和架构经验 Agenda ● go-zero之前世今生 ● go-zero是如何设计的 ● go-zero如何高效解决问题 go-zero之前世今生 go-zero的由来 异常捕获 并发控制 数据统计 监控报警 链路跟踪 自动降载 自动熔断 超时控制 Redis集群 Redis集群 数据库 MySQL集群 MongoDB集群 ClickHouse集群 服务发现 ETCD集群 Redis集群 代码未动,数据先行 ● 定义数据边界 ● 数据库互相隔离,通过RPC访问 ● No join, no pain! 用户 商品 订单 物流 如何设计缓存 ● 缓存穿透,不存在的数据0 码力 | 29 页 | 5.70 MB | 9 月前3
1.2 基于 Golang 构建高可扩展的云原生 PaaS 平台基于 Golang 构建⾼可扩展的云原⽣ PaaS 平台 刘浩杨 端点 技术专家 个⼈简介 - 18年加⼊端点,现任微服务和监控团队负责⼈ - 端点开源 PaaS Erda 的核⼼架构师 - 开源爱好者, Apache SkyWalking PMC 成员 ⽬ 录 ⾯向云原⽣的软件交付 01 端点⼀站式 PaaS - Erda 02 Erda 架构的思考 03 模块化开发框架 模块化开发框架 04 开源新时代的挑战 05 ⾯向云原⽣的软件交付 第⼀部分 ⾯向云原⽣的企业软件产品 - 敏捷开发 - 微服务化和容器化 - 交付标准化 - 可观察性 特点: 敏捷的⽬标是提升研发效能 需要⼀个 DevOps 平台来⽀撑敏捷开发的落地 这⾥需要有⼀个标准的交付平台 运⾏环境 业务 数据 业务系统 C 业务 数据 业务系统 A 业务 数据 业务系统 B Erda 第⼆部分 端点 PaaS 发展历程 有状态服务 Job / JobFlow 批计算 流计算 ⽆状态服务 DaemonSet Workloads 多集群调度 混合云调度 跨云迁移 多环境调度 业务数据统⼀调度 集群核⼼服务 Helm 镜像服务 Add-on filebeat / telegraf 监控 ⽇志 HPA Operator 注册中⼼0 码力 | 40 页 | 8.60 MB | 1 年前3
云原生时代分布式链路追踪实践-曲赛云原生时代分布式链路 追踪实践 2021-08 曲赛 (saiqu) 微服务架构的困境 故障定位难 极高的沟通和交接成本 错综难懂的模块依赖关系 链路梳理难 日志分散 定位过程“击鼓传花” 跨端性能瓶颈分析繁杂 性能分析难 缺乏对系统整体认知的把控 不合理的调用关系 不合理的直连存储 架构治理能力匮乏 云原生可观测性 3 4 Trace 标准规范 5 标准 一次网络调用的经过的拦截器数据流 天机阁2.0 简介 12 天机阁2.0是遵循OpenTelemetry标准的,为各业务或平台提供分布式追踪,监控,日志, 多维染色,容量评估,架构治理等能力的云原生可观测性系统。 愿景:让开发一切尽在掌握 - 分布式追踪 - 日志 - 服务监控 - 火焰图 - 存储监控 - SDK监控 - CI/CD监控 - 发布变更 - 告警历史 - 服务拓扑图0 码力 | 17 页 | 2.47 MB | 1 年前3
2 张孝峰 Python与云 AWS的Python原生应用浅析Python与云 ——AWS的Python原生应用浅析 张孝峰 亚马逊AWS资深解决方案架构师 Python 30周年 Python发展时间线 2019/10 v3.8 v2.7.17 开始实现 1989/12 v0.9.0 1991/2 v1.0.0 1994/1 v2.0 2000/10 v2.5 2006/9 v2.6 2008/10 v3.0 2008/12 2018 发布的功能和服务数量 AWS同样功能丰富 AWS向客户提供超过165项功能全面的服务 涵盖计算、存储、数据库、联网、分析、机器人、 机器学习与人工智能、物联网、移动、安全、混 合云、虚拟现实与增强现实、媒体,以及应用开 发、部署与管理等方面。 如何管理和使用海量的云API Amazon Athena Amazon Redshift 超过165项服务 数千个不同的API AWS Portal Task 12要素应用宣言 尽可能利用现代化的云平台 • 无需猜测容量 • 快速创新,低风险试错 • 摆脱无差异化的工作 • 数分钟全球化部署 Infrastructure as Code AWS CloudFormation 这个样例模板,通过500多行JSON代码完整的描述了一个LAMP网站 包括私有网络架构,数据库,和根据业务量自动伸缩的能力 Infrastructure0 码力 | 42 页 | 8.12 MB | 1 年前3
Erda 基于云原生的微服务可观测性 - 刘浩杨Erda 基于云原生的微服务可观测性 刘浩杨 端点科技 Erda 微服务和监控平台负责人 目 录 微服务系统监控的挑战 01 可观测性技术理论 02 Erda 服务观测平台技术内核分析 03 Erda 服务观测平台功能概览 04 Erda:新一代企业级云原生 PaaS 平台 当前微服务系统面临的挑战 目 录 微服务系统监控的挑战 01 可观测性技术理论 02 Erda 服务观测平台技术内核分析0 码力 | 25 页 | 6.96 MB | 1 年前3
Go在数据库中间件的应用Go在数据库中间件的应用 基础架构组/刘延允 liuyun827@foxmail.com 2017年9月 1 关于我 • 刘延允——酷狗音乐,基础架构组 • 数据库变更通知服务 • 酷狗消息队列 • 酷狗数据库中间件 • 主要工作:分布式存储、高可用、数据库 • 两年通信设备开发经验,四年互联网 • 五年C/C++使用经验,一年Golang 2 CONTENTS • 程序开发的需求 平滑上下线Mysql。 • 主备自动切换(主-主模式)。 • 分表设计——按照Hash分表 • 分表设计——按照范围分表(年、月、日、整形) • 数据库表在多个mysql实例间平滑扩容 • 大表拆分为多个子表情况下的平滑扩容 7 系统整体方案 • 现存问题 • 数据库访问基本采用直连方式 • 无法满足数据访问平台化要求 • 配置管理方式落后,运维压力大 • 为什么采用Go来实现 • go诸多优点,可用性高0 码力 | 17 页 | 4.02 MB | 1 年前3
4.GPT 与数据库的生态整合GPT 与数据库的生态整合 王琦智 PingCAP TiDB 开发者生态高级工程师 目 录 自然语言到 SQL 01 自然语言到图表 02 GPTs 调用数据库 API 03 总结 04 自然语言到SQL OSS Insight 自然语言到图表 Thoughts to insights made easy(with AI) GPTs 调用数据库 API Thank You0 码力 | 21 页 | 3.33 MB | 1 年前3
刘用涛 CnosDB时序数据库的Rust实践第三届中国Rust开发者大会 CnosDB时序数据库的Rust实践 Yongtao Liu CnosDB 研发工程师 Rust China Conf 2023 CnosDB 是一款基于 Rust 开发的 开源的分布式时序数据库 1. CnosDB 架构与选型 2. 为何从 Go 切换到 Rust 3. 使用 Rust 经验分享 4. 反哺社区 特性 • 横/纵 向扩展 • 计算存储分离 • 平衡存储性能与成本 • 查询引擎支持矢量化查询 • 兼容多种时序协议 • 可观测性 • 支持云原生 • 原生支持多租户 • 租户Quota可动态配置 • 云边端协同 • 云上生态融合 整体架构 1.2 存储引擎 version_set Vnode IndexEngine DataEngine cache imcache0 码力 | 26 页 | 3.28 MB | 1 年前3
共 444 条
- 1
- 2
- 3
- 4
- 5
- 6
- 45













